Wordnet

基于认知语言学的英语词典

WordNet是由Princeton 大学的心理学家,语言学家和计算机工程师联合设计的一种基于认知语言学的英语词典。它不是光把单词以字母顺序排列,而且按照单词的意义组成一个“单词的网络”。

简介
它是一个覆盖范围宽广的英语词汇语义网。名词,动词,形容词和副词各自被组织成一个同义词的网络,每个同义词集合都代 表一个基本的语义概念,并且这些集合之间也由各种关系连接。(一个多义词将出现在它的每个意思的同义词集合中)。在WordNet的第一版中(标记为1.x),四种不同词性的网络之间并无连接。WordNet的名词网络是第一个发展起来的,正因如此,我们下面将要讨论的大部分学者的工作都仅限于名词网络。
名词网络的主干是蕴涵关系的层次(上位/下位关系),它占据了关系中的将近80%。层次中的最顶层是11个抽象概念,称为基本类别始点(unique beginners),例如实体(entity,“有生命的或无生命的具体存在”),心理特征(psychological feature,“生命有机体的精神上的特征)。名词层次中最深的层次是16个节点。
详细介绍
普林斯顿大学认知科学实验室的研究人员写的);第二部分和第三部分主要是由普林斯顿认知科学实验室之外的参加WordNet研究工作的研究人员撰写的。第5章和第6章描述了WordNet的改进;第7章从形式化的概念分析的角度描述了WordNet;第8到第16章讨论了WordNet的各种不同应用。
(一)计算机与词库(computers and lexicon)
· 一个人即使不接受把人脑比作计算机的隐喻,也一定同意,计算机提供了一个良好的模式演练场,通过它,人们可以测试各种关于人类认知能力的理论模型。
· 越来越多的人认识到,一个大的词库对自然语言理解,人工智能的各方面研究都具有重要的价值。
· 对大规模机器可读词典的需求同时也带来许多基础问题。首先是如何构造这样一个词库,是手工编制还是机器自动生成?第二,词典中应包含什么样的信息?第三,词典应如何设计,即信息如何组织,以及用户如何访问?实际上,这些问题涉及到词典的编纂方法,词典的内容,词典的使用方式这一系列非常基础的问题。
(二)构造词库数据库(constructing the lexical database)
· 构建词典的两种基本方式:自动获取 / 手工编制。
手工构建词典的优点之一是便于创建更为丰富的词条信息;其次是便于控制。
(三)WordNet的内容
· WordNet的描述对象包含compound(复合词)、phrasal verb(短语动词)、collocation(搭配词)、
idiomatic phrase(成语)、word(单词),其中word是最基本的单位。
· WordNet并不把词语分解成更小的有意义的单位(这是义素分析法/componential analyses的方法);WordNet也不包含比词更大的组织单位(如脚本、框架之类的单位);由于WordNet把4个开放词类区分为不同文件加以处理,因而WordNet中也不包含词语的句法信息内容;WordNet包含紧凑短语,如bad person,这样的语言成分不能被作为单个词来加以解释。
· 人们经常区分词语知识和世界知识。前者体现在词典中,后者体现在百科全书中。事实上二者的界限是模糊的。比如hit(“打”)某人是一种带有敌意的行为,这是百科知识;而hit跟strike(“击”)多多少少同义,并且hit可以带一个直接宾语论元,这是词语知识。但hit的直接宾语应该是固体(而不是像gas这样的气体),这是词语知识还是百科知识就界限模糊了。不过毫无疑问,要理解语言,这两部分知识是缺一不可的。Kay(1989)指出我们的大脑词库应该包含这两部分知识。但是百科知识太多难以驾驭,WordNet不试图包括百科知识。不过,在WordNet中,对于一些不常见的专业概念,比如不常见的植物和动物,词语知识和百科知识是融合在一起的。
(四)WordNet的设计(the design of WordNet)
· 一般的词典都是按照单词拼写的正字法原则进行组织的。但如果为了获得词语意义信息的目的,通过词语语义属性来组织词典就更值得去做了。在线词典跟传统的纸张词典不同,允许使用者从不同的途径去访问词典信息。
· 第一个以意义作为组织原则的词典是罗杰斯同义词词林(Roget's Thesaurus)。传统的词典是通过提供给用户关于词语的信息来帮助用户理解那些他们不熟悉的词的概念意义。WordNet既非传统词典,也非同义词词林。它混合了这两种类型的词典。
(五)作为同义词词林的WordNet (WordNet as a thesaurus)
· WordNet跟同义词词林相似的地方是:它也是以同义词集合(synset)作为基本建构单位进行组织的。用户脑子里如果有一个已知的概念,就可以在同义词集合中中找到一个适合的词去表达这个概念。
· 但WordNet不仅仅是用同义词集合的方式罗列概念。同义词集合之间是以一定数量的关系类型相关联的。这些关系包括上下位关系、整体部分关系、继承关系等。
(六)作为一般词典的WordNet (WordNet as a dictionary)
· WordNet跟传统的词典相似的地方是它给出了同义词集合的定义以及例句。在同义词集合中包含对这些同义词的定义。对一个同义词集合中的不同的词,分别给出适合的例句来加以区分。
(七)WordNet中的关系 (relations in WordNet)
· 不同句法词类中的语义关系类型也不同,比如尽管名词都动词都是分层级组织词语之间的语义关系,但在名词中,上下位关系是hyponymy关系,而动词中是troponymy关系;动词中的entailment(继承)关系有些类似名词中的meronymy(整体部分)关系。名词的meronymy关系下面还分出三种类型的子关系(见“WordNet中的名词”部分)。
(八)网球问题(the tennis problem)
· WordNet是基于同义性和反义(对义)性来描述词语和概念之间的各种语义关系类型的。由于WordNet的注意力不是在文本和话语篇章水平上来描述词和概念的语义,因此WordNet中没有包含指示词语在特定的篇章话题领域的相关概念关系。例如,WordNet中没有将racquet(网球拍)、ball(球)、net(球网)等词语以一定方式联系到一起。Roger Chaffin在一封私人信笺中,曾把这类问题称为“tennis problem”(网球问题),指的就是如何把racquet、ball、net、court game(场地比赛);或者把physician(内科医生)跟hospital(医院)联系到一起。这对电子词典来说,是一个挑战。已经有一些相关的研究工作在探索如何从WordNet中包含的词汇和概念之间的语义关系,来推导出话题信息。Hirst和St-Onge描述了一种所谓的“词汇链”(lexical chain)的应用方法。“词汇链”是在基于名词的语义关系构成的上下文中的名词的序列。Al-Halimi和Kazman则在类似的基础上构造“词汇树”(lexical tree)来推导出话题信息。
(九)新的观点,改进,应用 (new perspectives, enhancements, and applications)
· 许多WordNet的用户都对WordNet中缺乏跟语义处理的细节相匹配的句法信息而感到遗憾。的确,WordNet中几乎没有句法信息,因为它是作为一个语义知识库构建的。但是,对形容词的部分句法约束信息是包含在WordNet中的(考虑形容词跟中心名词的关系,以及形容词作为属性形容词作表语使用的情况)。句法对动词而言最为重要,对此,可以通过动词的名词论元、介词短语以及义素组成等不同来加以次范畴化(分出动词小类)。目前,WordNet的每个动词同义词集中包含了及物性和论元类型的基本信息,但有关这些论元的性质的细节就很少提到。知识工程以及推理方面的应用系统特别受益于动名间关系的信息。WordNet的一些用户依靠其他一些语法知识库,像COMLEX,来配合WordNet中的语义信息一道使用。事实上,有关动词的句法信息和语义信息的区分基本是人为的。Levin(1985,1993)已经收集了令人印象深刻的证据来说明动词的语义性质跟其句法行为之间的紧密联系。
(十)词语和它的上下文 (words and their contexts)
· 为了提供词语的语境信息,普林斯顿(Princeton)认知科学实验室开发了一个语义检索工具(semantic concordance)——见《WordNet》一书第8章。该工具将文本和词库组成一个整体的数据库,从而使文本中的单词跟词库中合适的意义相关联。这样的语义检索工具,既可以看作是这样一个文本,其中的单词带有句法和语义信息的标注;也可以看作是一个词库,其中的词条都配有指示义项用法环境的例句。跟WordNet语义词库配合的文本是来自Brown语料库的语料(当代美国英语标准语料库)以及一个中短篇小说的全文(the complete text of a novella)。
(十一)意义排歧 (sense disambiguation)
· 尽管我们很清楚,在确定的上下文中,说者赋予多义词确定的一个意义,但排歧的过程并不容易。对计算机而言,排歧需要多大的语境就是一个大问题。
· Leacock和Chodorow(见《WordNet》一书第11章)测试了对多义动词“serve”进行多义词歧义消解的不同策略。在三个试验中,他们发现,选择上下文的“窗口”大小为6个词比较适宜,所得结果最优;此外,当将上下文信息和WordNet中有关词语之间语义相似度的信息结合在一起使用时,排歧准确度最高。
(十二)信息检索 (information retrieval)
· 意义排歧对许多应用来说都是关键因素,比如信息检索就是这样的应用领域。Voorhees(见《WordNet》一书第12章)解释说,要在大量文献中发现所需的文档,计算机就要在被查询词语和文档标题或摘要之间进行有效地匹配操作。Voorhees探讨了WordNet在词语匹配方面的效力,发现意义分辨方面的困难阻碍了有效利用WordNet中的语义信息。只有先依靠手工选择了概念,使得要查找的词语的意义已知,这种情况下,WordNet中的语义关系信息才对提高检索结果有帮助。
(十三)语义关系与文本连贯性 (semantic relations and textual coherence)
· Hirst 和 St-Onge(见《WordNet》第13章)也讨论了上下文的问题,尤其是一个连贯的文本是如何组成的。基于语篇是由意义相关的概念串联起来的假设,他们使用了“词汇链”(lexical chain)概念作为评估连贯性的一种方式。Hirst和St-Onge采用词汇链来检查文本中的用词错误情况(malapropism)。他们把用词错误定义为:一个词所对应的概念跟该词所在的文本中的其他词所对应的概念无关。利用评估一个词汇链中链接强度的方法,Hirst和St-Onge认为,文本中词语之间的语义距离越大,出现用词错误问题的可能性也越大。
· Al-Halimi和Kazman也对信息存贮,索引,检索等问题感兴趣(见《WordNet》第14章)。他们描述了一种自动对视频会议的脚本按照话题进行索引的方法(不是按照关键词索引),以及利用话题索引结果,通过匹配对脚本进行信息检索。Al-Halimi和Kazman将话题信息描述为“词汇树”(lexical tree)——这是对“词汇链”的一个修正。前者对后者的革新之一是考虑了不同的语义关系类型的信息相关性。
· Hirst和St-Onge指出,WordNet缺乏有关两个相关词之间语义距离的信息。他们举的例子是:more stew than steak(焖肉比牛排多),其中“more ... than”是一个格式,用来连接两个语义上相关的词语。在这个例子中,两个名词(stew和steak)分属6个同义词集合(synset),显然这无法反映出它们真实的语义距离。说英语的人知道“good person”(好人,圣人)的两个上下位概念之间语义上是非常相似的。这两个上下位概念分别是{saint, holy man, holy person, angel},{plaster saint},而且这两个概念之间的相似性与它们跟第三个下位概念之间的相似性不同。第三个下位概念是{square shooter, straight arrow}(正人君子)。
(十四)知识工程 (knowledge engineering)
· WordNet的诸多应用中,最具雄心壮志的也许是知识工程(见《WordNet》一书第15,16章)。
· Harabagiu和Moldovan(见《WordNet》一书第16章)指出,为常识推理建模需要一个扩展的知识库,其中包括数量巨大的概念和关系。WordNet提供了前者,但在关系方面不足以支持推理。他们的解决方案是对WordNet中的注释进行排歧,得到词语之间的更多关系,从而将WordNet中的注释转变为语义网络,其中包含不同词类之间的关系。他们举了一个例子:在hungry(饿)和refrigerator(冰箱)之间存在一个路径,因为这两个标记词在food(食物)这个节点上相撞,即通过food,可以把hungry和refrigerator联系到一起,从而用于常识推理。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市