二阶算术

数学名词

二阶算术(second order arithmetics)是递归论研究的内容之一。是刻画自然数理论的二阶形式理论。所使用的语言是二阶算术语言L2。它是在一阶算术语言L的基础上,增加二阶变元(即取值于函数或谓词的变量)及相应的量词而得。

概念
二阶算术(second order arithmetics)是递归论研究的内容之一。是刻画自然数理论的二阶形式理论。所使用的语言是二阶算术语言L2。它是在一阶算术语言L的基础上,增加二阶变元(即取值于函数或谓词的变量)及相应的量词而得。这种二阶语言在自然数结构N上也有其自然的解释。在这种解释之下为真的L2语句组成一个理论Ω2,即Ω2={φ|N⊨φ为L2语句}。Ω2称为二阶算术理论,简称二阶算术。类似地,其他高阶算术也可仿此定义。
一阶算术
一阶算术是递归论研究的内容之一。是刻画初等数论的一阶形式理论。表述这种理论的语言为一阶算术语言L。它除了含有通常一阶语言的内容外,还含有等词=,个体常元0(零),一元常函数S(后继)及两个二元常函词+(加)和×(乘)。设N为通常的自然数结构,则L可以在N中得到自然的解释。在这个解释之下为真的全体一阶算术语句(即L语句)构成一个理论Ω,即Ω={φ|N⊨φ & φ为L语句)},此理论Ω称为一阶算术理论,简称一阶算术.一阶算术Ω由直观上为真的全体一阶算术语句所组成,因此,它是一个协调的、完备的理论(这与佩亚诺算术PA大不一样).但是,Ω是不可公理化的,即无法从Ω中挑选出一个递归可枚举的语句集合作为公理,从而把Ω中的其他语句全部推出来。因而也不存在一个能行的过程,把Ω的全体语句能行地列举出来。
递归论
数理逻辑的一个分支,是一门研究递归函数及其推广的科学。递归函数是一种数论函数,其定义域与值域都是自然数集。只是由于构作函数的方法不同而有别于其他数论函数。将定义域推广到不限于自然数集时,便是所谓广义的递归函数。
递归论这门学科最早可以追溯到原始递归式的使用。古代人以及现代的儿童对加法及乘法的理解,实质上就是使用原始递归式。但直到16世纪的毛罗利科,尤其是17世纪的帕斯卡才正式使用与递归式密切相关的数学归纳法。19世纪德国数学家戴德金和意大利数学家皮亚诺正式使用原始递归式来定义加法与乘法,从而发展了自然数理论。1923年,斯科朗提出并初步证明一切初等数论中的函数都可以由原始递归式作出,即都是原始递归函数。1931年,哥德尔在证明其著名的不完全性定理时,以原始递归式为主要工具把所有元数学的概念都算术化了。原始递归函数的重要性日益受到人们的重视,人们开始猜测,原始递归函数可能穷尽一切可计算的函数。但是,阿克曼提出了非原始递归的可计算函数,否定了这个猜测,同时也要求人们探讨原始递归函数以外的可计算函数。1934年,哥德尔在埃尔布朗的启示之下,提出了一般递归函数的定义。美国的克林于1936年证明了这样定义的一般递归函数与丘奇所定义的λ-可定义函数是相同的,并给出了几种相等价的定义。这样的一般递归函数后来被称为埃尔布朗一哥德尔一克林定义。1936年,丘奇、图灵各自独立地提出一个论点,即凡可计算的函数都是一般递归函数,把递归函数论与能行性理论密切地结合起来,从而使递归函数的应用范围大大地扩展了。关于递归函数本身的研究的进展则在于定义域的推广,从而得到递归字函数、α递归函数和递归泛函等等。
随着集合论的发展,递归论也向广义递归论发展。序数上递归论对有限概念的推广在无限语言中得到了重要应用。自然数上递归论已在许多方面得到应用。
随着计算机科学的发展,要求把古典数学能行化。以尼罗德为代表的递归论学家开拓了递归数学的研究领域。他们把古典数学的基本概念算法化,然后考虑哪些数学定理可以成立,哪些无法成立。递归论在计算机科学中的应用主要是用于计算复杂性理论。起初是把图灵机作为研究计算复杂性的模型,考虑计算的时间、空间复杂性。继而基于递归论,再加上适当的公理又建立了抽象计算复杂性理论。近年来,递归论的方法大量用于P与NP问题的研究。
初等数论
数论的基础部分,常限于用初等数学的方法,而不借助于其他数学工具,去研究整数性质。它主要包括:整除理论、不定方程、同余式和连分数等。
早在公元前3世纪的古希腊时代,欧几里得(Euclid)所著《几何原本》一书中就记载了对素数无限性的证明、整数的因数分解、求两个正整数最大公因数的辗转相除法、关于完满数的一个著名定理等。此外,还有埃拉托斯特尼筛法,阿基米德(Archimedes)和丢番图(Diophantus)对不定方程的研究等。在数论发展史上,费马(Fermat,P.de)、高斯(Gauss,C.F.)和狄利克雷(Dirichlet,P.G.L.)等都做出了贡献。
中国古代在初等数论方面也有过光辉的成就,例如勾股定理、孙子定理(国外称为中国剩余定理)与圆周率的计算结果.数论也是中国近代发展得最早的数学分支之一,从20世纪30年代开始,在解析数论、丢番图方程、一致分布等方面都有过贡献。华罗庚在三角和估计与堆垒素数论方面的研究,陈景润对哥德巴赫猜想的研究,都走在数论研究的前沿。在初等数论中,常采用算术推导方法来论证数论命题。往往首先根据一些感性知识,提出某个数学猜想,然后予以证明。若这个猜想为真,即成为数论中的定理;若这个猜想不成立,即被否定。
数论中的猜想都是关于判断某个整数性质的命题,意义常常是浅显易懂的,但其证明却往往非常困难,需要高深的数学工具。例如,哥德巴赫猜想、费马猜想等,具有初中数学知识的读者,都能明白其意义,但是,这些问题却非常难解,几百年来,经过不少数学家的努力都尚未彻底解决。尽管如此,数学家们在这方面的努力不是徒劳的,他们在努力证明猜想的过程中,引入了许多新的数学思想,创造了许多新的方法和概念,发展成新的理论,从而推动了数论以至整个数学科学向前发展.例如,筛法已成为概率统计和组合论的重要方法;研究费马猜想引入的理想数概念已渗入到现代代数、几何和泛函分析等广大的数学领域。另一方面,其他各数学分支的研究成果也促进着数论的发展,法尔廷斯(Faltings,G.)利用代数几何的成就证明了莫德尔(Mordell,L.J.)提出的莫德尔猜想,从而使费马猜想的研究工作前进了一大步。1995年,怀尔斯(Wiles,A.)终于完满地证明了费马猜想。
初等数论是思维的体操,能锻炼人们的抽象思维能力和逻辑思维能力,随着科学技术的发展,在当今计算机时代和信息社会,在计算方法、密码学、组合数学、通信工程、离散控制系统等许多领域都有广泛的应用。所以,初等数论不仅是数学工作者,而且也是许多从事应用和实际工作的工程技术人员所不可缺少的数学知识。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市