偏微分方程论

包含多元函数的偏导数等式的偏微分方程

偏微分方程论(theory of partial differential e- quations)指包含多元函数的偏导数等式的偏微分方程,描述自变量、未知函数及其偏导数之间的关系。符合这个关系的函数是方程的解。偏微分方程分为线性偏微分方程非线性偏微分方程,常常有几个解而且涉及额外的边界条件

简介
偏微分方程论是研究这类方程的一个数学分支学科,一般亦称为偏微分方程。客观世界的物理量一般可能表示成时间 与空间位置坐标 的函数 ,它的变化规律往往表现为它关于时间和空间坐标的各阶变化率之间的关系,即函数u与 的各阶偏导数之间的等式.
这样一类包含未知函数及其偏导数的等式称为偏微分方程。由几个偏微分方程所构成的等式组(未知函数也可以是几个)称为偏微分方程组。偏微分方程或偏微分方程组中所含偏导数的最高阶数称为此方程或方程组的阶。
发展
微积分理论形成不久的18世纪,人们就研究用微分方程来描述物理问题,并针对具体的物理问题求解。人们最早研究的是弦的横振动方程达朗贝尔(D'Alembert, J. 1e R.)最先得出它的通解;丹尼尔第一·伯努利 (Bernoulli , Daniel I)从弦的声音是由基音和泛音叠加而成的观点出发,认为方程的所有可能的解是的形状,其中l是弦长;达朗贝尔、欧拉(Eider, L. ) 和拉格朗日(I,agrange , J. -L.)还研究了两端固定的弦满足初始条件的解,并对解的允许函数进行了激烈的争论.欧拉和拉格朗日在流体力学的工作中,勒让德(Legendre, A. -M.)与拉普拉斯((Laplace , P. -S.)在天体力学的工作中都研究了调和方程。在流体力学的论文中,柯西(Cauchy,A.)得到了现在所称的柯西一黎曼方程组,欧拉得出了理想流体动力学方程组。
18世纪末,蒙日(Monge )开创了用几何解释偏微分方程的思想,对一阶和二阶非线性方程建立了完整的特征理论。19世纪,傅里叶(Fourier)系统研究了热传导方程,阐述了把有界区间上初边值问题的解表为三角级数或贝塞尔函数、勒让德函数的级数的一般分离变量法,对初值问题通过积分变换得出了解的表达式.他的工作不仅使微分方程的发展迈出了重要的一步,而且使人们把函数的概念从单个解析表达式中解放出来,促进了函数论、级数理论的发展,引起了人们对数学的逻辑基础的探讨。同时,还出现了许多现在以首创者命名的方程、公式和解法。例如,引力场的泊松方程、泊松公式、格林公式、格林函数,解二阶双曲型方程的黎曼方法,粘性流体运动的纳维一斯托克斯方程,柯西弹性力学方程组,电磁波的麦克斯韦方程组。这些成就对科学技术的发展起了巨大的推动作用,例如,麦克斯韦 (Maxwell , J. C.)预言电磁波以光速通过空间,断言光是电磁现象,鼓舞了洛伦兹(Lorentz,H. A.)关于电子的学说和爱因斯坦(Einstein, A.)关于相对论的研究。柯西给出了第一个关于解的存在定理,开创了偏微分方程的现代理论.杜·布瓦一雷蒙(Du Bois-Reymond , P. D. G.)提出把二阶线性偏微分方程分为椭圆、双曲和抛物三种类型.到19世纪末,二阶线性偏微分方程的一般理论已基本建立,偏微分方程或者称数学物理方程这一学科开始形成. 20世纪30年代起,各种泛函分析方法陆续被应用于偏微分方程的研究。20世纪40年代,绍德尔 (Schauder , J. P.)所采用的先验估计方法,不仅完满地建立了一般二阶线性椭圆型方程的古典解理论,而且为解决偏微分方程定解问题提供了非常有用的技巧。20世纪40年代末期出现的广义函数与索伯列夫空间理论,为偏微分方程理论的进一步发展提供了基本的工具。20世纪50到60年代,一方面作为线性分型方程理论的扩展和深人,一般线性偏微分算子理论得到了发展;另一方面,由于先验估计的深人发展,拟线性椭圆和抛物方程理论有了重大的进展,拟线性双曲方程(组)的间断解的研究也有许多好的成果。
近二三十年进展较快,且在当前国际上有较多人研究的偏微分方程问题有:在线性问题方面,微分算子的概念已先后推广为拟微分算子、傅里叶积分算子和仿微分算子,利用它们研究偏微分方程解的存在、解的光滑性、定解问题的惟一性、局部可解性、解的奇性传播与反射等问题,都取得了很好的结果。微局部分析方法是新发展起来的重要工具,利用它不仅解决了线性方程的许多新问题,且被逐步推广应用于处理非线性问题。在非线性问题方面,研究得较多的有拟线性与完全非线性椭圆及抛物方程、非线性双曲方程、孤立波、自由边界问题、反应扩散方程、多重解和分歧解等。研究中,不动点理论、拓扑度、变分方法(包括临界点理论)、上(下)解方法、单调算子理论、非线性半群、隐函数定理及变分不等式等方法和工具不断发展并得到了新的应用.微分流形上的偏微分方程的研究也取得了许多深人的结果,微分几何与偏微分方程的相互渗透成为一个重要的发展趋势。
偏微分方程
偏微分方程中常以 为未知数及偏微分,如下:
用于空间偏微分的梯度运算子 ,和时间偏微分 。
常微分方程
常微分方程是本科数学专业的核心基础课程,内容包括:微分方程建模、初等积分法、线性系统、常系数线性系统、若干振动问题、一般理论、定性理论初步。自微积分创立以来,人们就开始研究微分方程。从最初的初等求解技巧到今天日益发达的数值模拟技术,从早期对方向场的理解到今天关于微分方程定性理论、分岔理论的成熟知识体系,三百多年的历史使这门数学分支不仅成为了数学学科中队伍最大、综合性最强的领域之一,而且成为数学以外学科最为关注的领域之一。也正是因为科技发展对于微分方程的要求越来越强烈,所以各个学校都在结合自身的特点,开展一些教学上的改革,在课堂上展开多种形式的教学,力图使学生能够深刻理解微分方程所要传达的信息。
常微分方程课堂教学建设的主要内容,数学类各专业培养具有良好的数学基础和数学思维能力,受到数学建模、计算机和数学软件方面的基本训练,在数学和数学应用方面受到良好的教育,具有较高的科学素养和较强的创新意识,具备科学研究、解决实际问题及软件开发等方面的基本能力和较强的更新知识能力的综合人才。常微分方程课程是继数学分析、高等代数之后的一门重要基础课程,为学习泛函分析、偏微分方程等后继课程提供强有力支撑,也是应用性很强的一门课程,在实现数学、力学等专业培养目标中具有不可替代的重要作用。综合考虑该课程的特点,以及与其他相关课程的衔接问题,明确课程定位,确立本课程的具体目标为:(1)强化理论基础,服务后续课程;(2)强化建模思想和方法,鼓励学生思考,提高动手能力,培养创新意识。为此,加强课堂建设,需要从以下几方面入手:
1.把课堂知识模块化,突出重点加强难点
2.采取灵活的教学模式,提高课堂教学质量
3.教学形式与手段的多样化,促进课堂教学
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市