克拉茨问题

数学术语

二十世纪30年代,克拉茨还在上大学的时候,受到一些著名的数学家影响,对于数论函数发生了兴趣,为此研究了有关函数的迭代问题.50年代开始,在国际数学界广泛流行着这样一个奇怪有趣的数学问题:任意给定一个自然数x,如果是偶数,则变换成x/2,如果是奇数,则变换成3x+1.此后,再对得数继续进行上述变换.

计算公式
50年代开始,在国际数学界广泛流行着这样一个奇怪有趣的数学问题:任意给定一个自然数x,如果是偶数,则变换成x/2,如果是奇数,则变换成3x+1.此后,再对得数继续进行上述变换.例如x=52,可以陆续得出26,13,40,20,10,5,16,8,4,2,1.如果再做下去就得到循环:
(4,2,1).再试其他的自然数也会得出相同的结果.这个叫做叙古拉猜想.
上述变换,实际上是进行下列函数的迭代
x/2 (x是偶数)
C(x)=
3x+1 (x是奇数)
问题是,从任意一个自然数开始,经过有限次函数C迭代,能否最终得到循环(4,2,1),或者等价地说,最终得到1?据说克拉茨(L.Collatz)在1950年召开的一次国际数学家大会上谈起过,因而许多人称之为克拉茨问题.但是后来也有许多人独立地发现过同一个问题,所以,从此以后也许为了避免引起问题的归属争议,许多文献称之为3x+1问题.
下面是我对克拉茨问题的初步研究结果,只是发现了一点点规律,距离解决还很遥远.
克拉茨命题:设 n∈N,并且
f(n)= n/2 (如果n是偶数) 或者 3n+1 (如果n是奇数)
现用f1(n)表示f(n),f2(n)=f(f(n)),...fk(n)=f(f(...f(n)...)).
则存在有限正整数m∈N,使得fm(n)=1.(以下称n/2为偶变换,3n+1为奇变换,并且称先奇变换再偶变换为全变换)
克拉茨命题的证明
引理一:若n=2m,则fm(n)=1 (m∈N)
证明:当m=1时,f(n)=f(2)=2/2=1,命题成立,设当m=k时成立,则当m=k+1时,fk+1(n)=f(fk(2k+1))=
=f(2)=2/2=1.证毕.
引理二:若n=1+4+42+43+...+4k=(4k+1-1)/(4-1) (k∈N),则有f(n)=3n+1=4k+1=22k+2,从而f2k+3(n)=1.
证明:证明是显然的,省略.
引理三:若n=2m(4k+1-1)/(4-1) (m∈N), 则有fm+2k+3(n)=1.
证明:省略.
定理一:集合 O={X|X=2k-1,k∈N} 对于变换f(X)是封闭的.
证明:对于任意自然数n,若n=2m,则fm(n)=1,对于n=2k,经过若干次偶变换,必然要变成奇数,所以我们以下之考虑奇数的情形,即集合O的情形.对于奇数,首先要进行奇变换,伴随而来的必然是偶变换,所以对于奇数,肯定要进行一次全变换.为了直观起见,我们将奇数列及其全变换排列如下:
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
0 2k-1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101
1 3k-1 2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146 149 152
2 3k-2 1   4   7   10   13   16   19   22   25   28   31   34   37   40   43   46   49   52   55   58   61   64   67   70   73   76
3 3k-1     2       5      8       11       14       17       20       23       26       29       32       35       38
4 3k-2     1             4               7               10               13              16               19
5 3k-1                  2                               5                               8
6 3k-2                  1 4
7 3k-1 2
8 3k-2 1
第一行(2k-1)经过全变换(3(2k-1)+1)/2=3k-1变成第二行,实际上等于第一行加上一个k,其中的奇数5,11,...6k-1又回到了第一行.以下各行是等差数列3k-2,3k-1交错排列.由于最终都变成了奇数,所以集合O对于变换f(X)是封闭的.
定理二:任何奇自然数经过若干次变换都会变成1.
证明:
我们看到 奇数经过全变换变成为3k-1型数,3k-1型奇数经过全变换有一半仍然变成3k-1型奇数,而另一半3k-1型偶数经过除以2有一半变成为3k-2型奇数,而3k-2型奇数经过全变换又变成为3k-1型数.换句话说不可能经过全变换得到3k-2型数.
下面我们只研究奇数经过全变换的性质,因为对于其他偶数经过若干次偶变换,仍然要回到奇数的行列里来.
我们首先证明奇数经过若干次全变换必然会在某一步变成偶数.
设2a0-1是我们要研究的奇数,它经过全变换变成3a0-1,假设它是一个奇数并且等于2a1-1,2a1-1又经过全变换变成为3a1-1=2a2-1,3a2-1=2a3-1,...3ak-1-1=2ak-1,所以a1=(3/2)a0,a2=(3/2)a1,...ak=(3/2)ak-1.
所以最后ak=(3/2)ka0,要使ak是整数,可令a0=2kn,(n是奇数).于是ak=3kn.则从2a0-1经过若干次全变换过程如下:
2k+1n-1 -> 3*2kn-1 -> 32*2k-1n-1 -> 33*2k-2n-1 ->... -> 3k+1n-1 (偶数).
然后我们证明经过全变换变成偶数的奇数一定大于该偶数经过若干偶变换之后得到的奇数.
设3k+1n-1=2mh (h为奇数),我们要证明 h<2*3kn-1:
h=(2*3kn-1+3kn)/2m<2*3kn-1,令a=3kn,b=2m-1,则有 2ab>a+b,而这是显然的.
定义:以下我们将称呼上述的连续全变换紧接着连续的偶变换的从奇数到另外一个奇数的过程为一个变换链.
接着我们证明奇数经过一个变换链所得的奇数不可能是变换链中的任何中间结果,包括第一个奇数.
若以B(n)表示奇数n的变换次数,m是n经过变换首次遇到的其他奇数,则有
定理三:B(n)=k+1+B(m),其中k是满足3n+1=2km的非负整数.
证明:n经过一次奇变换,再经过k次偶变换变成奇数m,得证.
举例来说,B(15)=2+B(23)=2+2+B(35)=2+2+2+B(53)=2+2+2+5+1+B(5)=2+2+2+5+1+5=17
结论
二十世纪30年代,克拉茨还在上大学的时候,受到一些著名的数学家影响,对于数论函数发生了兴趣,为此研究了有关函数的迭代问题.
在1932年7月1日的笔记本中,他研究了这样一个函数:
F(x)= 2x/3 (如果x被3整除) 或者 (4x-1)/3 (如果x被3除余1)或者 (4x+1)/3 (如果x被3除余2)
则F(1)=1,F(2)=3,F(3)=2,F(4)=5,F(5)=7,F(6)=4,F(7)=9,F(8)=11,F(9)=6,...为了便于观察上述迭代结果,我们将它们写成置换的形式:
1 2 3 4 5 6 7 8 9 ...
1 3 2 5 7 4 9 11 6 ...
由此观察到:对于x=2,3的F迭代产生循环(2,3)
对于x=4,5,6,7,9的F迭代产生循环(5,7,9,6,4).
接下来就是对x=8进行迭代,克拉茨在这里遇到了困难,他不能确知,这个迭代是否会形成循环,也不知道对全体自然数做迭代除了得到上述两个循环之外,是否还会产生其他循环.后人将这个问题称为原始克拉茨问题.如今人们更感兴趣的是它的逆问题:
G(x)= 3x/2 (如果x是偶数)或者 (3x+1)/4 (如果x被4除余1)或者 (3x-1)/4 (如果x被4除余3)
不难证明,G(x)恰是原始克拉茨函数F(x)的反函数.对于任何正整数x做G迭代,会有什么样的结果呢?
经计算,已经得到下列四个循环:
(1),(2,3),(4,6,9,7,5),(44,66,99,74,111,83,62,93,70,105,79,59).
因为G迭代与F迭代是互逆的,由此知道,F迭代还应有循环(59,79,105,70,93,62,83,111,74,99,66,44).
G迭代还能有别的循环吗?为了找到别的循环,人们想到了下面的巧妙方法:
由于G迭代使后项是前项的3/2(当前项是偶数时)或近似的3/4(当前项是奇数).如果G迭代中出现循环,比如迭代的第t项at与第s项as重复(t<s):at=as.但
as/as-1,as-1/as-2,...at+1/at
或等于3/2,或者近似于3/22,因而
1=as/at=as/as-1*as-1/as-2*...at+1/at≈3m/2n
这里 m=s-t,m < n
即 2n≈3m
log22n≈log23m
故 n/m≈log23
这就是说,为了寻找出有重复的项(即有循环),应求出log23的渐进分数n/m,且m可能是一个循环所包含的数的个数,即循环的长度.
log23展开成连分数后,可得到下列紧缺度不同的渐进分数:
log23≈2/1,3/2,8/5,19/12,65/41,84/53,485/306,1054/665,24727/15601,...
渐进分数2/1表明,31≈22,循环长度应为1.实际上恰存在长度为1的循环(1).
渐进分数3/2表明,32≈23,循环长度应为2.实际上恰存在长度为2的循环(2,3).
渐进分数8/5表明,35≈28,循环长度应为5.实际上恰存在长度为5的循环(4,6,9,7,5).
渐进分数19/12表明,312≈219,循环长度应为12,实际上恰存在长度为12的循环(44,66,...59).
这四个渐进分数的分母与实际存在的循环长度的一致性,给了人们一些启发与信心,促使人们继续考虑:是否存在长度为41,53,306,665,15601,...的循环?令人遗憾的是,已经证明长度是41,53,306的循环肯定不存在,那么,是否会有长度为665,15601,...的循环呢?
F迭代与G迭代究竟能有哪些循环呢?人们正在努力探索中!
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市