协整检验

宏观经济学名词

宏观经济计量分析中,Granger(1987)所提出的协整方法已成为了分析非平稳经济变量之间数量关系的最主要工具之一,且通过线性误差修正模型(ECM)刻画了经济变量之间的线性调整机制,这就是所谓的线性协整方法。随着经济理论的发展,尤其是交易成本和政策反应的经济分析中,传统的线性协整分析已不再是合适的分析方法,鉴于此Balk和Fomby(1997)提出了所谓的阈值协整(Threshold Cointegration)方法,它刻画了经济变量之间的非线性调整机制。

基本介绍
如在股票交易过程中,由于交易费用、交易政策等因素会导致股价的非对称调整;国家的货币政策由于制度方面的原因也会对通货膨胀率产生非对称调整行为。因此阈值协整方法论是分析这类经济问题的最有力的工具之一。阈值协整是对Granger(1987)提出的用来描述经济变量之间长期关系的协整概念的至关重要发展。众所周知,协整是指如果经济变量之间存在长期协整关系,且正则化协整向量是(1,-β′),则之间的长期均衡关系可以表示为:
其中:β参数是变量之间的协整系数向量,γ是阈值变量,d是转换变量,d是滞后参数,则这种协整称之为阈值协整。如果协整误差项是形如式(2)的数据生成机制,则称为Two-Regime的阈值协整;如果是形如式(3)的误差生成机制,则称为Three-Regime的阈值协整。在以前的研究中,对于式(2)和式(3)所表示的阈值协整,大多研究都集中在ρ、q、θ、λ四个参数都小于1的情形,而对其它情形研究较少(Enders和Granger(1998)。本文主要研究如下情形,即:
此时式(2)和式(3)所表示的阈值协整即所谓的部分协整(Partial Cointegration)。针对部分协整检验,caner和Hansen(2001)提出一个统计量,且Gouveia和Rodrigues(2004)将该统计量应用阈值协整检验,但是他们并没有对该统计量的检验势进行研究。而在我们以前的研究中发现:该统计量在检验阈值协整时具有低势。因此,本文一方面提出一个新的统计量来检验部分协整,并通过仿真研究该统计量的检验水平和检验势,同时也和Engle-Granger(1987)年所提出的EG两步法(简记为EG法)进行了比较;另一方面将部分协整扩展到Enders和Siklos(2001)提出的冲量部分协整(Momentum Partial Cointegration,即M-部分协整),并对其进行系统的仿真研究。
一、部分协整检验的统计量
Seo(2006)基于阈值向量误差修正模型(TVECM)提出了原假设:没有协整,备择假设是阈值协整的检验方法,但是该方法不能把部分协整从阈值协整中区分出来,因此本文为了弥补这一缺陷,提出了新的检验统计量,来进一步检验阈值协整是否是部分协整。不失一般性式(2)可以写成:
其中Γ是潜在的阈值区间,在本文中我们以转换变量的15%分位数和85%分位数作为阈值的潜在范围(Andrews,1993)。如果φ和的t值只有其中一个显著,则此时的协整就是部分协整,如果两个t值都显著则认为是阈值协整(即在Two-Regime阈值协整中,两个Regimes中都是平稳过程或在Three-Regime的阈值协整中,两头的Regimes都是平稳过程)。另外在式(1)中也可以加入截距项或趋势项,检验步骤和没有截距和趋势项的检验是一样的。
二、部分协整检验统计量的自助法(Bootstrap Method)
由于infT统计量极限分布是非标准的t分布,因此本文采用自助法来确定该统计量的渐近P-值与检验水平,同时也采用统计量的仿真临界值研究检验势和水平。自助法由Efron(1979)提出,在计量经济学检验中应用十分广泛,尤其在统计量的抽样分布无法得到的情况下,运用该方法研究检验统计的检验势和水平显得尤为重要。同时在式(7)的ECM模型中,协整误差项在原假设下是非平稳的,所以本文将采用Hansen[11](2000)提出的固定回归元自助法(Fixed Regressor Bootstrap Method,简记FRB)来确定统计量的渐近P值和检验水平。其基本步骤如下:首先让式(7)的被解释变量独立同分布的标准正态中抽取,即~innd(0,1);如果是异方差时,通过获得被解释变量序列,其中是式(7)在原假设下的OLS估计残差序列~innd(0,1)。第二步在式(7)的ECM模型中,固定回归元(即固定解释变量数据序列),并对模型进行OLS估计,计算统计量t(γ)。第三步在潜在阈值γ的取值区间内,搜索infT*值,由此通过下式获得infT统计量的渐近P-值和检验水平:
asyP-value=Prob(infT<infT*)  (11)
三、部分协整检验的Monte-Carlo仿真研究
(一)统计量检验势和检验水平、渐近P-值的仿真步骤
infT统计量由于包含有备择假设中的赘余参数,其渐近分布是非标准的,即不再是标准的t分布,那么通过仿真来研究该统计量的性质成为了当前的主流办法。所以对该统计量的检验势和检验水平性质的研究,也通过计算机仿真来实现。为了简单起见,通过双变量模型来仿真研究检验统计量,具体的仿真步骤如下:
①生成部分协整的双变量的I(1)数据,且协整误差项是由(6)式所生成;
②确定潜在阈值的取值范围,上、下界分别取转换变量的15%、85%的分位数,并构造该区间作为阈γ值的潜在取值;
构造式(7)所示的ECM模型,并在给定阈值γ的条件下计算φ的条件t值,然后在阈值γ的潜在取值范围内搜索t(γ)的最小值infT的值;
⑤利用上文中的FRB法确定该统计量的渐近P-值或通过下文的仿真临界值确定检验势。
对于infT统计量检验水平的仿真研究,仿真步骤基本不变,只是在第一步的数据生成中,要生成不协整的双变量的I(1)数据,然后根据:
Size=Prob(infT*>infT) (12)
来确定检验水平。
(二)统计量临界值的仿真研究
表1 infT统计量的小样本临界值仿真
注:表中数字表示在10000次仿真中,在置信水平分别为10%、5%、1%的情况下,拒绝不存在协整原假设的统计量的临界值。
(三)infT统计量检验水平的仿真研究
注:由于固定回归元自助法用于M-部分协整时,统计量的检验水平都等于0,说明在检验M-部分协整时“弃真”的概率比检验部分协整时更大,所以在表中没有列出这一部分的检验水平。
从表2来看,固定回归元自助法在检验部分协整时具有较严重的水平扭曲且会增大“弃真”的概率,而利用仿真临界值进行检验水平仿真时具有较小的检验水平扭曲;其次两种方法的检验水平都随着样本容量的增大呈不规则的变化,也就是说检验水平扭曲程度并没有随着样本容量的增大而减少。
(四)infT统计量渐近P-值、检验势的仿真研究
表3 无截距项的部分协整模型的渐近P-值、检验势仿真研究
注:EG法的临界值取自Engle-Yoo(1987)的仿真临界值,如当样本容量为100时,显著性在0.01、0.05、0.10时临界值分别为-4.07、-3.37、-3.03;表中仿真临界值检验势是基于表1中的仿真临界值仿真而成;表中数字表示比率。
从表3来看,首先在检验部分协整时,infT统计量的固定回归元自助法比仿真临界值法的检验势要高,因为从固定回归元自助法的渐近P-值来看,几乎所有的渐近P-值都很小,如显著性水平为5%时,几乎所有的检验都拒绝没有协整的原假设;其次采用仿真临界值的检验法和EG检验都随着值的增加(即数据序列的持久性(Persistence)增强)检验势明显下降,但是EG法的下降程度明显快于检验;第三在检验部分协整时,法的检验势比EG法要高得多。
在检验M-部分协整时,首先统计量的固定回归元自助法具有较高的检验势,因为几乎所有的渐近P-值都接近0,所以在利用统计量检验M-部分协整时,采用固定回归元自助法可以获得较高的检验势;第二在检验M-部分协整时,仿真临界值的检验法和EG检验都随着值的增加(即数据序列的持久性增强)检验势明显下降,但是EG两步法的下降程度明显快于检验;第三仿真临界值的检验法在检验M-部分协整时比检验部分协整时具有较低的检验势。
四、结论
通过对检验统计量的仿真研究,研究表明在检验所谓的部分协整和M-部分协整时,固定回归元自助法的统计量具有较高的检验势,但是固定回归元自助法在检验部分协整和M-部分协整时具有较严重的水平扭曲且都会增大“弃真”的概率,而利用仿真临界值进行检验水平仿真时具有较小的水平扭曲;其次采取仿真临界值的检验法会随着数据序列“持久性”的增强,其检验势呈下降趋势,但下降速度没有EG两步法快;而第三仿真临界值的检验法在检验M-部分协整时比检验部分协整时有较低的检验势。
目的
协整即存在共同的随机性趋势。协整检验的目的是决定一组非平稳序列线性组合是否具有稳定的均衡关系,伪回归的一种特殊情况即是两个时间序列的趋势成分相同,此时可能利用这种共同趋势修正回归使之可靠。正是由于协整传递出了一种长期均衡关系,若是能在看来具有单独随机性趋势的几个变数之间找到一种可靠联系,那么通过引入这种“相对平稳”对模型进行调整,可以排除单位根带来的随机性趋势,即所称的误差修正模型
在进行时间序列分析时,传统上要求所用的时间系列必须是平稳的,即没有随机趋势或确定趋势,否则会产生“伪回归”问题。但是,在现实经济中的时间系列通常是非平稳的,人们可以对它进行差分把它变平稳,但这样会失去总量的长期信息,而这些信息对分析问题来说又是必要的,所以用协整来解决此问题。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市