大行星运动理论

研究空间运行的理论

大行星运动理论是研究空间运行的理论,行星运动理论是编制行星历表的基础。

发展历史
人们自古就注意到了金星、木星水星火星土星五大行星在天上的运动。古代巴比伦人已经相当准确地知道行星的公转周期,并把观测到的运动用经验公式表示出来。中国也很早就测定了行星的公转周期和会合周期,在马王堆出土的帛书中就有这方面的记载。稍后,希腊人用几何方法来解释行星的运动,公元二世纪时出现的托勒密地心体系就是这些学说的代表。这个体系在欧洲天文学中统治了14个世纪之久,直到哥白尼日心体系出现后,才把被颠倒了的太阳和地球的位置重新颠倒过来。不过,哥白尼也还未能摆脱圆周运动的旧观念。十七世纪初期,开普勒系统地分析了第谷的观测结果,发现行星绕太阳运行的轨道不是圆,而是椭圆,并归纳出著名的行星运动三大定律(见开普勒定律)。他相当准确地揭示了行星运动的规律。根据这些定律已能解释当时所知的行星运动现象,并把推算行星位置的精度提高到1'~2'。但是,开普勒定律毕竟只是对行星运动现象的概括描述,还不能对这种现象作出动力学的解释。开普勒本人也发现,他的理论并不能满意地解释木星和土星的运动。
1687年,牛顿发现了著名的万有引力定律,为行星运动现象作出动力学的解释。按照牛顿的理论,行星若只受太阳引力的作用,则它的运动就遵循开普勒定律,只是开普勒第三定律还应作微小的修正。实际上,行星不仅受到太阳引力的作用,而且还受到其他行星引力的影响,所以行星的运动情况相当复杂。直到今天,人们还不能得到行星运动方程的严格解。在十八、十九世纪,由于航海定位等实用需要,一些国家先后出版天文航海历书,加上分析方法的发展,建立行星运动方程近似解的分析理论就成为当时天体力学的一个主要课题。很多杰出的数学家都在这方面进行研究,并取得很大的成就。在太阳系中,太阳质量比行星大千倍以上,因而太阳对行星的引力远比行星相互间的引力大。在求行星运动方程的近似解时,通常可从二体问题出发,研究真实轨道运动对椭圆运动的偏离,求出摄动的分析表达式。这样,不但便于计算行星在较长时间内的具体位置,也可以了解行星轨道运动的一些性质。
研究行星的轨道运动,还可以反过来探求影响其运动的物理机制。在这方面有两个著名的事例。其一是海王星的发现。自从1781年F.W.赫歇耳(见赫歇耳一家)在系统的巡天观测中发现天王星以来,人们察觉到在这颗新行星的运动中有一些无法解释的不规则性。半个世纪以后,J.C.亚当斯和勒威耶各自分析了天王星的运动,断定有一颗未知的行星在影响它的轨道,并且以惊人的精度指出新行星在天空中的位置。1846年,终于在他们指出的位置发现了海王星。其二是水星近日点进动问题勒威耶发现水星近日点每世纪有38″的反常进动,不能用万有引力定律解释。稍后纽康更精确地测定这个差值为43″。这就引起人们的种种猜测,有人认为万有引力定律中的平方反比规律有问题,有人则认为这种现象是由一颗未知的水内行星的摄动引起的,但所有这些猜测都未能成立。直到二十世纪初,爱因斯坦发表广义相对论,才解开了这个疑团。
拉格朗日确立了研究行星运动的方法。他把行星的真实轨道看作是一系列不断变动的椭圆,并推导出椭圆轨道要素随时间变化的微分方程组,可以用逐次近似法将这方程组进行积分而得到轨道要素的分析表达式。在这些表达式中,含有和时间t成正比的项,称为长期项或长期摄动。长期项反映出轨道要素的变化趋势。其中,半长径a和偏心率e的长期摄动,在研究太阳系稳定性方面占重要地位。表达式中其他各项都是 t的周期函数。它们又可分为短周期项和长周期项。如果两行星的平均角速度 n和n┡的比值很接近简单分数,就会出现周期很长且系数特大的长周期摄动。在木星和土星的相互摄动中就出现这种情况,它们的平均角速度比值接近5:2,因而产生显著的长周期摄动,对木星为1,196″,对土星达到2,908″,周期约为890年。
计算行星位置更方便的方法是直接研究行星坐标的摄动。在这类方法中,最有名的是拉普拉斯纽康的方法。十九世纪纽康建立的内行星运动理论,兼有轨道要素摄动和球坐标摄动法的特点,把轨道要素表示为时间的多项式,求出相应的椭圆坐标后,再加上黄经、黄纬和向径的周期摄动。直到,各国天文年历仍然根据纽康理论编算内行星的历表。用汉森方法研究大行星运动也很有效。这种方法假定行星在密切平面上作椭圆运动,计算其平近点角、向径和轨道平面的摄动。希尔用汉森方法建立了木星和土星的运动理论。
大型快速计算机的出现,使数值方法得到广泛的应用。1951年埃克特等对五颗外行星的运动方程同时进行数值积分,计算了它们在1653~2060年间的日心坐标,这套历表为各国天文年历所采用。其后又陆续出现了多种更为精密的数值历表,供行星际探测使用。克莱门斯最早利用电子计算机研究行星普遍摄动来建立火星理论。他根据经典的汉森方法,利用电子计算机演算,考虑到二阶和部分三阶摄动,精度达到0奖02~0奖03,已能符合现代观测的要求。以后,考虑电子计算机的特点,在方法上又有新的发展。比如,用迭代法代替经典的、按摄动天体质量展开的方法,可使逐次近似过程最大程度自动化,并达到较高的精度。
运动原理
人类在很早的时候,就开始了行星运动规律的研究。开普勒是日心说的拥护者,他认为日心说是十分和谐又极为简明的,他的终生愿望就是完善日心说。开普勒于1600年成为丹麦天文学家第谷、布拉赫的一名助手,首先承担了准确地确定火星运行轨道的任务,在当时已经发现的六大行星中,火星的轨道的圆偏离最大,于是,他立志要阐明火星轨道的形状。
开普勒首先研究了地球的轨道,因为生活在地球上的观察者对于某一时刻地球在宇宙间的相对位置处于无知状态,也就无法确定其他行星的位置与轨道形状。在研究地球轨道的形状时,开普勒选择了当地球、火星和太阳位于宇宙间同一直线上时开始观察,经过一个火星年(即687天)后,火星将回到它本身轨道上的同一点,而地球却没有回到它本身轨道的同一点。但是,从地球上看太阳和火星的方向,并以恒定作参照物,指向太阳和火星的视线的交点就是地球的位置。在研究了几组每隔一个火星年所作的观察数据以后发现,地球的轨道是近似于圆的椭圆形,太阳稍微偏离圆心。
在确定了地球的轨道形状和运行周期以后,开普勒开始研究火星的轨道。他再次利用了每隔一个火星年的观察数据。一个火星年比两个地球年的时间小(一个火星年是687天,两个地球年是730天),因此,在一个火星年的始末两个时刻,从地球指向火星的视线方向是不同的,这两条视线的交点正是火星在轨道上的一点。根据这样的方法可以确定火星轨道的许多点,通过这许多点所描的曲线正是一个椭圆。
开普勒还发现:大阳是在这个椭圆的一个焦点上,另一个焦点空着。开普勒综合这些研究终于发现了行星运动的一条规律——开普勒第一定律:所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳是在这些椭圆的一个焦点上。丹麦天文学家第谷·布拉赫对行星位置进行了廿年的测量工作,积累了大量的数据,这些数据为开普勒的研究打下了坚实的基础。
开普勒根据第谷的一年中每天太阳表现位置的记录,把这些记录数据所表示的位置画在地球的椭圆形轨道上,他就能确定地球沿轨道的运行速率,在开普勒的地球围绕太阳的运行图上(图3)发现,地球距太阳最近时运动最快,地球距太阳最远时运动最慢。从图3中可以看出,地球从A点到B点的时间等于它从C点到D点的时间,但AB弧长大于CD弧长,由此可见,上面所得到的结论是十分明显的。
运动定律
开普勒是继哥白尼之后第一个站出来捍卫太阳中心说、并在天文学方面有突破性成就的人物,被后世的科学史家称为“天上的立法者”。开普勒之所以留名青史的原因,是因为他发现了著名的《开普勒行星运动三大定律》,这些定律是在没有光学仪器的时代中,最后的重大发现。
在他继承了第谷的事业后,他对第谷留下来的资料进行计算。对火星轨道的研究是开普勒重新研究天体运动的起点。因为在第谷遗留下来的数据资料中,火星的资料是最丰富的,而哥白尼的理论在火星轨道上的偏离最大。起先他仍按照传统观念,假设行星进行的是匀速圆周运动,但是用正圆编制火星的运行表,火星老是出轨。他便将正圆改为偏心圆。在进行了无数次的试验后,他找到了与事实较为符合的方案。可是,依照这个方法来预测卫星的位置,却跟第谷的数据不符,产生了8分的误差。这8分的误差相当于秒针0.02秒瞬间转过的角度。这样子的误差在很多人眼里可能微不足道,但开普勒绝对的相信他老师所遗留的观测资料,于是他决定不用圆轨道来计算行星位置,而改用其他的圆锥曲线。在进行了多次实验后,开普勒将火星轨道确定为椭圆,并用三角定点法测出地球的轨道也是椭圆,断定它运动的线速度跟它与太阳的距离有关,使计算值与观测值有了相当好的吻合。按开普勒的说法〝就凭这8'的差异,引起了天文学全部的革命〞。
第一定律
而将其总结,就是开普勒第一运动定律:
“行星轨道为椭圆,太阳在其任一焦点上”
这个定律将哥白尼学说推进了一大步。
而第二定律与第一定律几乎同时发现 :
第二定律
“行星的向径(行星与太阳的连线)在单位时间内扫过的面积相等。”
这也就是说,行星在近地点公转得较快,在远地点公转得较慢。换而言之,行星的运动并不是匀速的。综合第一及第二定律,人们可以知道,行星并不是象人们以往所想象的那样在进行匀速圆周运动。这一定律进一步推翻了唯心主义的宇宙和谐理论,指出了自然界的真正的客观属性。
第三定律
在发现这两条定律后,开普勒继续他的工作,在几年之后,终于将第三定律完整的呈世人眼前 :
“行星公转周期的平方正比于轨道半长轴的立方”
这一定律揭示了太阳的所有行星轨道半长轴的立方与周期的平方比值为同一个常数的规律,将太阳所有行星的运动联系了起来,将太阳系变成了一个统一的物理体系。后来这一定律又被推广到了对于任意的同一中心天体(恒星、行星)它们的所有环绕天体的轨道半长轴的立方与周期平方的比值为常数。
这三条定律所揭示的,是一个力学的新境界,也是天体力学
开普勒不仅为哥白尼日心说找到了数量关系,更找到了物理上的依存关系,使天文学假说更符合自然界本身的真实。开普勒在完成三大定律时曾说道:“这正是我十六年前就强烈希望探求的东西。我就是为了这个目的同第谷合作的……大势已定!书已经写成,是被人读还是后代有人读,于我却无所谓了。也许这本书要等上一百年,要知道,大自然也等了观察者六千年呢!”
开普勒在其一生中,却无法对这行星运动定律做出解释。一是因为当时的数学工具不足,另一个原因是他的生命没那么长。但是开普勒也对于重力的存在做出了猜测,事实上,这行星运动定律正是牛顿力学在天体力学的展现,而这定律在科学史上之所以如此举足轻重,就是因为这三大定律导致了数十年后牛顿重力理论的发现。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市