张鸣镛

厦门大学教授

张鸣镛(1926--1986),教授。浙江温州人。1948年毕业于浙江大学数学系。建国后,历任厦门大学讲师、教授、数学系副主任,福建省数学会副理事长。其被称为“数学王子”。撰有论文《芬斯勒流空间的子空间的平均曲率》、《黎曼曲面》《凸区域的一个遮盖定理》,著有《现代分析基础》。为陈景润的老师。

人物简介
张鸣镛(1926-1986),温州人。少年时代,他就自写一副对联:“知数理共天文一色,待天才与奈端齐飞”(奈端是当时牛顿的译名)。1942年,考入浙大数学系(当时有“东方剑桥”之称)他是能同时上中国著名数学家苏步青、陈建功研习班的少数几个学生。1948年,大学毕业后,即被母校选拔为助教。他在数学领域取得的研究成果,博得国内外科学界一致赞誉和钦佩。建国后,历任厦门大学讲师、教授、数学系副主任。1986年5月12日,在福建省厦门市逝世。
厦门大学教授、中国数学会理事、福建省数学会副理事长、《数学年刊》编委、《数学研究与评论》副主编。
主要从事函数论、势位论的研究。撰有论文《芬斯勒流空间的子空间的平均曲率》、《黎曼曲面》、《凸区域的一个遮盖定理》,著有《现代分析基础》。
人物经历
张鸣镛1937年考入温州中学。1942年,考入浙大数学系,才华横溢,数学成绩尤为出众,深为浙大教授苏步青、陈建功所赏识。1948年,大学毕业后,即被母校——浙江大学数学系选拔为助教。
张鸣镛担任浙江大学数学系助教期间,在苏、陈两位教授的指导下,取得令人瞩目的成果。1950年,他阐述芬氏空间子空间平均曲率的几何定义的论文问世,成为当时这方面问题的唯一文献。1955年,他在函数学论方面的一项研究成果,被命名为“张鸣镛常数”,并列入教育部审定的函数论教学大纲。他研究多函数解析,研究成果受到国际数学界的重视。他在多重调和势位,多重调和张量等理论方面的系列成果,受到在罗马尼亚召开的世界数学会议高度评价。他的论文《凸区域一个遮盖定理》一文用德文发表后,美国《数学评论》立即摘要转刊。他还写出了函数势位论方面的第一本讲义。德国著名GMN丛书第101卷引用的中国数学家的六篇论文中,有两篇是张鸣镛的。二十世纪50年代中期厦大数学系的辉煌与他紧密相关。
1948年,张鸣镛大学毕业,当时浙大数学系留了两名助教:他和谷超豪。解放后,他被派参加接管浙江金华的英士大学。在院系调整中,浙大数学系被解散,他被分配到厦门大学。张鸣镛到厦门的头五年中,发表了10篇论文,这期间他对多重调和函数、多重调和势位及多重调和张量场做出了重要的成果。值得特别提出的是,张鸣镛在1955年发表了论文,该文所得到的一个凸象的Bloch型常数Tρ,后来曾被称为“张鸣镛常数”,并在1980年教育部审定的函数论专门化教学大纲中列为一个条目。这是列入该大纲的唯一的以中国数学家命名的条目。
在这期间,他还把平面区域内映照的莫尔斯(Morse)拓扑方法推广到Riemann曲面,并对阿尔弗斯(Ahlfors)把Schwarz引理推广到Riemann曲面上去的优越成果,作了进一步的改进。从1952年到1957年,厦大数学系的确培养了一批高水平的毕业生,例如陈景润、赖万才、林群等。陈毕业后曾是张鸣镛的助教,作为一个新建的系,这样的成绩是珍贵和值得赞扬的。1955年到1957年,厦大数学系多次受到教育部的表扬。国际数学家大会曾来函邀请他们参加 1958年的爱丁堡大会(由于“反右”,未能参加)。1980年,《数学年刊》创刊,张鸣镛担任编委。1981年,《数学研究与评论》创刊,张鸣镛担任副主编。1983年,他参加了全国数学会大会,并当选为理事。他在会上报告论文《实质极大的Riemann曲面》,给出了Riemann曲面是实质极大的充分必要条件。张鸣镛在1956年曾参加中国数学会在北京召开的论文报告会。后来1960年的全国数学会大会,已不准他参加了。后来他才再一次参加了全国性的数学大会。但27年的时间已经过去了。不料两年之后,当中国数学会在上海召开大会及理事会时,他又不能参加了,当时他正躺在上海的医院里,癌症已到了晚期。1986年5月12日凌晨,张鸣镛在厦大医院与世长辞。
出版图书
成果
中国古代数学史研究
张鸣镛对中国古代数学史的有些精辟见解。他认为中国古代数学的特点是计算数学,关键是十进制。因此,有9个数就够了,“九,数之极也”。在这个基础上求高次代数方程的近似解时,对每位数顶多试(中国古代叫“议”)10次就够了。中国古代有很发达的代数,与古希腊形成鲜明的对比。至于中国古代的几何学,他认为主要贡献不是墨子书中一些希腊式的几何定义,而是“”。他认为矩就是直角坐标架。直角坐标法和“商高定理”形成了中国独特风格的解析几何学。这就是《周髀算经》中“夫矩之于数,其制裁万物,唯所为耳”那段话的意思。这同古希腊的几何学又形成鲜明的对比。这些观点发表在为庆祝方德植教授教学50周年的论文中。
张鸣镛很注意中国数学史的问题。他在1962年的一次谈话中说:“从微积分发展以来的近世数学的主要部分中,古希腊的几何和数论并没有留下不可缺少的重大遗产。比较起来,古代中国,或更广泛一些,古代东方,所发展的代数知识倒是近世数学分析更重要得多的源泉。古希腊没有像中国那样发达的代数。缺乏像十进制那样的计数法。他们不是把数分成个、十、百、千、万来写,然后计算,却是想法把大数尽量化成较小的数的乘积,然后计算。这使他们重视素数,发展了数论。”(见“文革”中的交代材料)
培养年轻人
“文革”后,他花很多精力培养年轻人,先是办助教进修班。60年代初及1978年,他两次主办过这种进修班。1979年,教育部委托厦大代办3个高校师资培训班,其中数学方面的培训班是张鸣镛主持的。此后,他大力培养研究生。他经常说,对于一个数学工作者来说,要坚持做到两条:一条是打好基础;另一条是一定要学习写论文。他时常对学生们讲:在学习中要积极思考、大胆探索,决不要迷信名家,名家也免不了有错误的结果。如果能找到反例把前人的结论推翻,也是一大成果,避免后人错上加错。他本人也是这样做的,例如论文。
经过几年的努力,一些学生开始成长。1981年,以后的几年内他们已发表了20多篇论文。例如一篇硕士论文《零容致密集上的椭圆马丁边界》(发表在1983年《数学年刊》第4卷),徐利治教授认为较之美国的博士论文并无逊色。日本中井教授也来信说这篇论文很好,向导师张鸣镛教授致意。关于张鸣镛及其学生的部分工作可参阅美国数学会出版的ContemporaryMathematics,Vol.48(1985)中Riemann曲面一章,这一章是张鸣镛写的。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市