电源回路是主板中的一个重要组成部分,其作用是对主机电源输送过来的电流进行电压的转换,将电压变换至CPU所能接受的内核电压值,使CPU正常工作,以及对主机电源输送过来的电流进行整形和过滤,滤除各种杂波和干扰信号以保证电脑的稳定工作。电源回路的主要部分一般都位于主板CPU插槽附近。
简介
【读音】dian yuan hui lu
【释义】电源回路:指的是电源内部回路和外部负载回路的两种电路系统,电源的负载电路可视其为电源回路中的
等效电阻,也可以认为是交直流
供电电源内外部
电路回路中的附加系统。
分类
线性电源供电
这是好多年以前的主板供电方式,它是通过改变
晶体管的导通程度来实现的,晶体管相当于一个可变电阻,串接在供电回路中。由于可变电阻与负载流过相同的电流,因此要消耗掉大量的能量并导致升温,电压转换效率低。尤其是在需要大电流的供电电路中
线性电源无法使用。目前这种供电方式早已经被淘汰掉了。
开关电源供电
这是目前广泛采用的供电方式,
PWM控制器IC芯片提供脉宽调制,并发出
脉冲信号,使得
场效应管MOSFET1与MOSFET2轮流导通。
扼流圈L0与L1是作为
储能电感使用并与相接的电容组成LC
滤波电路。
其工作原理是这样的:当负载两端的电压VCORE(如CPU需要的电压)要降低时,通过
MOSFET场效应管的开关作用,外部电源对
电感进行充电并达到所需的额定电压。当负载两端的电压升高时,通过MOSFET场效应管的开关作用,外部电源供电断开,电感释放出刚才充入的能量,这时的电感就变成了电源继续对负载供电。随着电感上存储能量的消耗,负载两端的电压开始逐渐降低,外部电源通过MOSFET
场效应管的开关作用又要充电。依此类推在不断地充电和放电的过程中就行成了一种稳定的电压,永远使负载两端的电压不会升高也不会降低,这就是开关电源的最大优势。还有就是由于MOSFET场效应管工作在开关状态,导通时的内阻和截止时的
漏电流都较小,所以自身耗电量很小,避免了
线性电源串接在电路中的电阻部分消耗大量能量的问题。这也就是所谓的“
单相电源回路”的工作原理。
单相供电一般可以提供最大25A的电流,而现今常用的CPU早已超过了这个数字,P4处理器功率可以达到70-80瓦,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。就是一个两相供电的示意图,很容易看懂,就是两个单相电路的
并联,因此它可以提供双倍的电流供给,理论上可以绰绰有余地满足目前CPU的需要了。但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能,导体的电阻,都是影响Vcore的要素。实际应用中存在供电部分的效率问题,电能不会100%转换,一般情况下消耗的电能都转化为热量散发出来,所以我们常见的任何稳压电源总是电气元件中较热的部分。要注意的是,温度越高代表其效率越低。这样一来,如果电路的
转换效率不是很高,那么采用两相供电的电路就可能无法满足CPU的需要,所以又出现了三相甚至更多相供电电路。但是,这也带来了主板布线复杂化,如果此时布线设计如果不很合理,就会影响高频工作的稳定性等一系列问题。目前在市面上见到的主流主板产品有很多采用
三相供电电路,虽然可以供给CPU足够动力,但由于电路设计的不足使主板在极端情况下的稳定性一定程度上受到了限制,如要解决这个问题必然会在电路设计布线方面下更大的力气,而成本也随之上升了。
电源回路采用
多相供电的原因是为了提供更平稳的电流,从控制芯片PWM发出来的是那种脉冲
方波信号,经过LC震荡回路整形为类似直流的电流,方波的高电位时间很短,相越多,整形出来的准直流电越接近直流。
电源回路对电脑的性能发挥以及工作的稳定性起着非常重要的作用,是主板的一个重要的性能参数。在选购时应该选择主流大厂设计精良,用料充足的产品。
电容
按照
Intel主板技术白皮书的说法,现在主板
CPU插槽附近的
滤波电容单个容量最低为1000
μF,一般主板都采用1000μF 的
电解电容(很会精打细算啊),而在Intel的原装主板上,这样的电容单个容量高达3300μF,这就是大家推崇Intel主板稳定性的原因之一。
从指标上区别:电容电压的范围非常重要,可以在电容上看到”+、-”的字样,这是电容电压的承受范围,这个数值越小电容则越好。
看电容的容量:主板电容的容量一般都是直接标注的,Intel要求CPU供电电路的滤波电容单个容量至少在1000μF以上,而现在的电容容量多 在2000
μF~4000μF之间,部分主板采用了容量为5000μF的电容,内存槽附近的电容容量多在1000μF~1500μF之间,容量较小的电容 很难提供给CPU、内存以充足的纯净电流,有些老式主板升级CPU后出现的不兼容问题实际也源于此。一般主板都是采用大量小容量电容,整齐的拍部在CPU 附近,也有个别主板厂商使用几个大容量电容。其实两者的成本相差无几,目的都是提供足够的电容容量也确保CPU供电的稳定。
Intel白皮书中也指出
915主板CPU周围要有一圈固体电容,可依然有主板厂商省略掉。
耐温值在另一方面也说明了电容的品质,主板上的电容耐温值多为105℃,而如果你的主板电容耐温值为85℃,那多半是厂商过于节约材料的结果,低耐压值的电容在使用上没问题,不过当CPU处在
超频现在主板上用的电容一般都是LOWESR(低漏电,低噪音)的,耐温参一般为105℃。对于采用2000μ的大
电解电容,它滤波的动作较大 比较粗鲁,可以用较少的电容来完成电源的滤波过程,而采用1000μ的小电解电容,滤波动作比较柔和,要用较多的电容并联来完成电源的滤波动作。前者滤波波形损失较大,严重的甚至会滤掉一些重要的波形,后者由于多个电容并联能产生并联效应,所以对波形损失少,也就是滤波的效果好些。
用一句话来说:就是因为采用1000μ的小
电解电容,由于滤波柔和,采用较多电容并联来完成电源的滤波,提供很好的效果。所以给了很多的用户认为电容越多越好的印象。
如何计算电容的数目:
计算所需的电容,先要分清楚,输入电容和输出电容。一般的分辨方法是,电感的后级部分是输入电容,而前级部分是输出电容。
第一步:输入部分的计算
公式:能供给CPU功率=电容能承受涟波电流×CPU供电输入电压×电容数目
现在的CPU都是用12V供电输入的,我们以输入给CPU 100W功率来计算:100/12=8.333A 。那么我们需要输入的电容能适应 8.333A的Ripper涟波电流Ripper Current(以下简称涟波电流)。如果无法吸收过多的涟波电流,就会造成输入电流品质不良,影响稳定。
悍马的
固态电容是台系产品,但是依然不影响其品质,请记住,最次的固态电容也比最好的液态
电解电容要好
当然,1颗电容是不够的。普通的电解电容大致有三种常用规格:10*16mm、8*20mm、10*12.5mm。我们以日系松下的
电解液电容为例,一颗 10*16mm的松下电容能承受2A, 8*20mm的能承受1.87A,10*12.5mm的能承受1.54A。因此要对付8.333A的涟波电流, 10*16规格的也需要4颗以上(4×2=8A<8.333A) 。当然实际应用中可以稍微小一些,不用做满,因为这里的CPU功率是按照瞬时最大 功率计算的,现实中很少会真正发生。
了更好理解电容数量和CPU功率的关系,我们拿悍马HA01-GT来做案例,他们都是用的4颗 OCR的330uF 16V
固态电容。而固态电容比电解液电容要能承受更多的涟波电流,悍马HA01GT上的输入电容OCR固态电容的涟波电流是6A。
这样计算公式如下: 6A×4×12V=288W ,能够提供288W的功率给CPU。也就是说要达到同样的输出效果,普通的最高能够承受2A的
电解电容,需要的数目至少是固态电容的3倍。如果有兴趣,可以去计算一下市场上主板的输入电容能对应输出多少W
功率给CPU。
二.输出部分的计算
公式:理想需求涟波电流总和=CPU输出功率÷CPU工作电压
通常输出部分的用料总会比计算出的要少很多(这些是靠用料经验来决定的)。因为CPU输出功率是个不稳定值,
最高输出功率和最低会有很大的落差。如果完全按最大输出功率来设计用料,即使不惜工本,按照目前机箱的规格,主板PCB上是排不下那么多电容的。
用CPU输出100W来计算用料。通常CPU的工作电压在1.35V左右,那输出的电流强度就是 100/1.35=74.074A,换而言之,所有输出电容可承受的涟波电流总和要等于或大于74A才是最理想搭配。
以悍马HA01-GT为例,它使用了8颗OCR 1500uF 2.5V的固态电容,官方公布每颗能承受电流为7.2A也就是57.6A。这 样,和理想状态还是有一定差距,更不要说,如果都换成普通
电解液电容,差距就更大。但即使换成电解液电容,由于CPU输出功率波动极大的特性,主板还是能 正常工作的。
看主板是几相供电:其实,几相供电也仅仅是一种电路设计,问题的关键并不在于数量有多少,而是需要保证足够的稳定性。以
Prescott核心的 Pentium4 CPU为例,其峰值功耗大约可以达到120W左右,而其电压一般保持在1.35V。经过简单的计算,此时供电电流大约需要90A。
主板厂商所要做的是如何分配这90A电流,因为仅用
单相供电实在太危险,此时供电元件难以承受高发热量。而假如使用多相开关电源电路提供,那么每组分担的电流就会小得多,此时就可以减小发热量,从而保证稳定性。更为重要的是,一旦用户进行
超频,那么供电电流会进一步提升。
电脑中所谓三、
四相供电,实际上是将三、四路PWM开关供电电路“
并联”在一起形成的三、四路供电,例如上例所说,使原本一路90A左右的大电流供电系统分成三、四路,减轻了元件的负荷,从而提高了元件工作寿命,也使板卡工作更加稳定。
从上面的说明我们可以看出,其实供电的电容和供电回路,只是为了提高系统的稳定运行,增加元器件的工作寿命,让板卡工作更加稳定而设计的。
1.什么是固态电容:我们已现在常见的固态铝质
电解电容为例:它与普通电容(即液态铝质电解电容)最大差别在于采用了不同的
介电材料,液态铝电容介电材料为
电解液,而固态电容的介电材料则为导电性高分子。
2.
固态电容又好在哪里:对于经常去网吧或者长时间使用电脑的朋友,一定有过或者听过由于主板电容导致电脑不稳定,甚至于主板电容爆裂的事情!那就是因为一方面主板在长时间使用中,过热导致电解液受热膨胀,导致电容失去作用甚至由于超过沸点导致膨胀爆裂!
另一方面是,如果主板在长期不通电的情形下,
电解液容易与
氧化铝形成化学反应,造成开机或通电时形成爆炸的现象。但是如果采用固态电容,就完全没有这样的隐患和危险了!
3. 固态电容具备的优点:固态电容具备环保、低阻抗、高低温稳定、耐高
纹波及高信赖度等优越特性,是目前
电解电容产品中最高阶的产品。由于固态电容特性远优于液态铝电容,
固态电容耐温达摄氏 260度,且导电性、频率特性及寿命均佳,适用于低电压、高电流的应用,主要应用于数字产品如薄型DVD、投影机及
工业计算机等。