磁离子理论

物理学文化术语

研究电磁波在磁离子介质中传播的理论。 研究电磁波在磁离子介质中传播规律的理论。由处于外磁场中的自由电子、正负离子和中性粒子组成的宏观上电中性的冷等离子体称为磁离子介质。电离层属于磁离子介质,因而磁离子理论也是电离层中电波传播的理论基础。

简介
研究电磁波在磁离子介质中传播的理论。由处于外磁场中的自由电子、正负离子和中性分子组成的物质称为磁离子介质。宏观上它是中性的,各种粒子间常发生碰撞,碰撞频率可认为是常数,并忽略粒子热运动的影响。
磁离子介质中的电磁波 受电磁波作用而作加速运动的带电粒子辐射出次波,所有的次波与入射波叠加起来形成在介质中的波场。介质和波的这种相互作用,决定了波传播的速度,表现为介质对电磁波的色散特性。做加速运动的带电粒子与其他粒子相互碰撞,将一部分电磁波能量转变为其他粒子热运动的能量,表现为介质对电波的吸收。外磁场对带电粒子的作用致使介质对电波的折射指数与波矢的方向有关,呈现出各向异性的特点。同时,在同一方向上存在有二个相速度,各相应于不同偏振的特征波,所以说磁离子介质是双折射介质。当电磁波的频率很高时,由于惯性,介质中的带电粒子来不及作大幅度的运动,辐射次波的效应很小,介质的色散特性衰退,此波将以接近真空中的光速,不损耗能量地传播。当电磁波的频率很低时,沿外磁场方向的介质电导率趋于无穷,电磁波以磁流波形式、以阿尔芬速度传播。
磁离子介质的复折射指数 它可描述介质对电磁波的色散和吸收特性,以及电波的偏振特性,在射频,它可近似地由阿普顿-哈特里公式给出式中可见,复折射指数n是电子密度N、碰撞频率ν、电波角频率ω、电波波矢量与外磁场夹角θ,以及外磁场强度H0的函数。ε0和μ0分别是自由空间的介电常数和导磁率;;式中ωN为等离子体频率;ωH为磁旋频率。
当略去碰撞的影响时,n为实数。n2大于零时,波以行波的形式传播;n2等于零时,介质中各带电粒子在电磁波的作用下作同相振动,称为等离子体振荡,在略去外加磁场时,其角频率为ωN;n2小于零时,电场强度E与磁场强度H在相位上相差90°,在介质中无能量传输,称为消散波。
入射电磁波的能量在介质中以电场能量、磁场能量和带电粒子运动的动能三种形式表现出来。当电磁波的频率足够高时,离子运动的影响可以略去。若折射指数接近于1,则介质中电场的能量密度与磁场的能量密度相等,且远大于电子运动的动能,这时的波称为“电磁”的。当折射指数接近于零时,电场能量等于电子运动的动能,且远大于磁场能量,这时的波称为“电运动”的。当电磁波的频率足够低时,应考虑离子运动的影响。此时,折射指数远大于1,离子运动的动能与磁场能量相等且远大于电场能量,这时的波称为离子磁波,它以阿尔芬速度传播,沿用阿尔芬的术语,也可称为磁流波。
偏振 在磁离子介质中传播的电磁波,其电(或磁)向量不断地改变方向和大小,可用这向量端点的轨迹来表示电磁波的这种特征,这称为电磁波的偏振。场向量在三个相互垂直方向上的分量之比可以完全确定波的偏振状态。一般说,任两个分量之比为复数,它表示在相应的平面内,向量端点的轨迹为椭圆,称该波为椭圆偏振波。在一些特殊情况下椭圆退化为圆或直线,分别称为圆偏振波或线偏振波。沿着波矢方向看,向量旋转的方向符合右手法则的称为右旋偏振,符合左手法则的称为左旋偏振。在传播的过程中,如果波的偏振状态保持不变,则称该波为特征波。
吸收 受电磁波影响而作加速运动的带电粒子从波中吸取了能量,当它与其他粒子碰撞时,将其中的一部分传递给其他粒子,变为其他粒子热运动的能量。因此,在传播的过程中不断地发生由电磁场能量变为介质热运动能量的变化。当ω2ν2时,吸收的大小与ν成反比,这是因为碰撞频率高,连续两次碰撞之间的时间短,带电粒子受波场作用而作加速运动的持续时间短,从波场中取得的能量小的缘故。当ω2ν2时,吸收的大小与ν成正比,这是因为碰撞次数多,损失的能量多,吸收与ω2成反比,由于频率高,带电粒子在同一方向作加速运动的持续时间短,吸收的能量少。外磁场的存在对吸收有明显的影响,非常波所遭到的吸收比寻常波的大。
纵传播 波矢量与外磁场方向平行。此时,电磁波的所有场向量以及相关的粒子运动均在垂直于波矢量的平面内。两个特征波分别是左旋圆偏振波(L-波)和右旋圆偏振波(R-波)。对于L-波,当波的角频率ω等于离子的磁旋频率ωHi时,n2趋于无穷。另外,设n2=0时的电磁波角频率为ωc1和ωc2,且ωc2>ωc1,则当ωωc1时n2>0,有一通带,波以行波形式存在。当ωH<ω<ωc1时,n2<0,有一阻带,波只能以消散波的形式存在。对于R-波,当ω=ω(电子的磁旋频率)时,n2趋于无穷;当ωωc2时,n2>0,有一通带,波以行波形式存在;当ω<ω<ωc2时,n2<0,有一阻带,波只能以消散波的形式存在。不论是L-波还是R-波,当ω趋于无穷时,n2→1。当ω→0时,n→nA(阿尔芬折射指数)。
横传播 波矢量垂直于外磁场方向。两个特征波中有一个是电向量在外磁场方向的线偏振波,它不受外磁场的影响,称为寻常波(O-波),另一个是在垂直于外磁场平面的椭圆偏振波,波矢量在偏振面内,在波矢方向上存在有场矢量的分量,这一特征波受外磁场的影响,称为非常波(X-波)。对于O-波,当ω=0时,n2趋于无穷;ω<ωN时,n2<0,波只能以消散波形式存在;ω=ωN时,n2=0,波将会激发出等离子振荡;ω>ωN时,n2>0,波以行波形式存在。当ω趋于无穷时,n2趋于1。对于X-波,存在有下面几个特殊频率:使n2趋于无穷的频率记为和;使n2=0的频率记为ωc1和ωc2,则当ω<,ωcωc2时,有一通带。当<ω<ωc1和<ω2,则称为下混合频率,为上混合频率。ω=时,电子与离子在同一方向上运动;ω=时,电子与离子在相反方向上运动。这些波的电矢量与波矢量平行。
渡越频率ωc0当介质中有几种离子成分时,可能在某些频率上,两个特征波的折射指数相同,这些频率称为渡越频率。如果此时波的偏振状态又非常接近,则会发生由一种特征波激发出另一种特征波的现象。
准纵(QL)和准横(QT)近似 在一些条件下, 任意方向传播的波, 其性质分别与纵传播或横传播时相似, 所以称为准纵或准横传播。当ω>>ωN和ωHiωωN时几乎在所有方向上传播都可用 QL近似。当ω接近于ωN和ωωHi时几乎在所有方向上传播都可用QT近似。当ω趋于零时,除沿外磁场方向外,均可用QT近似。当ω趋于无穷时,除垂直于外磁场方向外,均可用QL近似。
当电波波矢量与外磁场夹角θ为任意值时,波进入介质后,分成两个特征波,当θ连续地过渡到90°时,其中一波与横传播的寻常波一致,我们也称这一特征波为寻常波,而另一波为非寻常波。但此两波均受外磁场影响。
参考书目
J.A.Ratcliffe,The magneto-ionic Theory & Its Application to ionosphere,Cambridge Univ.Pr.,Cambridge,1959.
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市