纪奎,河北师范大学教授,博士生导师,河北师范大学数学科学院副院长。
教育背景
博士,算子理论与算子代数,
河北师范大学,2005-2008
硕士,算子理论与算子代数,
河北工业大学,2002-2005
学士,数学,聊城大学,1998-2002
访问经历
访问学者,菲尔兹研究所(加拿大),2007 访问学者,
波多黎各大学(美国),2009国家公派访问学者,IndianInstitute of Science (印度); 2012
教学情况
本科生课程:《高等数学》、《数学分析》、《复变函数》
研究生课程:《算子理论》、《C*代数》
科研情况
1:科研项目
(1)国家自然科学基金青年基金:算子代数的分类,批准号:10901046,2010-2012(已结题);主持人
(2)
国家自然科学基金面上项目:曲率,第二基本形式与几何算子的相似性的研究,批准号:11471094,2015-2018(已结题)主持人;
(3)高等学校全国优秀博士学位论文作者专项资金(已结题)主持人;
(4)河北省杰出青年基金;拟齐次曲线的相似分类,批准号:A2016205219,2016-2018(已结题)主持人;
(5)河北省2014年青年拔尖人才;复几何在算子代数中的应用,批准号BJ2014037,2015-2017,(已结题)主持人;
(6)国家自然科学基金重点项目:算子代数中的几何与分类理论,批准号11831006 (在研) 参与人;
(7)国家自然科学优秀青年基金项目:算子理论与算子代数,批准号:11922108 主持人,2020-2022(在研)
2:学术论文:
(1)Jiang, Chunlan, Guo, Xianzhou, and Ji, Kui., K-group and similarityclassification of operators. J. Funct.Anal. 225 (2005), n o.1 , 167--192.
(2)Jiang, Chunlan and Ji, Kui. Similarity classification of holomorphic curves. Adv. Math. 215 ( 2007), no.2 , 446--468.
(3)He, Hua and Ji, Kui., Strongly irreducible decomposition and similarity classification of operators. Illinois. J. Math 51 ( 2007) , no.2 , 409—428.
(4)Ji, Kui and Jiang, Chunlan, A complete classification of AI algebra with the ideal property, Canada. J. Math. 63, No.2,381-412 (2011).
(5)Ji, Kui, Similarity classification and properties of some extended holomorphic curves. Integral Equations and Operator Theory 69 (2011), no.1,133–148.
(6)Jiang, Chunlan; Ji, Kui .Theory of strongly irreducible operators and its applications. Adv. Math.《数学进展》(China)40 (2011), no. 4, 385–392.
(7)Ji Kui, Shi Rui, Similarity of multiplication operators on the Sobolev disk algebra. Acta. Math. Sin. (Engl. Ser.)29 (2013), no. 4, 789–800.
Proc. Indian Acad. Sci. Math. Sci. Vol 124. N0.2. May (2014),243-253.
(9)Ji, Kui, Jiang, Chunlan, Dinesh Kumar Keshari, Gadadhar Misra, Flag structure for operators in the Cowen-Douglas class, C.R.Acad.Sci.Paris.Ser. I, 352 (2014) 511-514.
(10)Hou, Yingli and Ji, Kui On the extended holomorphic curves on C* algebras. Oper. Matrices 8 (2014), no. 4,999–1011.
(11)Dai, Hong; Hou, Yingli and Ji, Kui A note on curvature and similarity of some CowenDouglas operators. J. Math. Anal.Appl. 444 (2016), no. 1, 167–181.
(12)Hou, Yingli; Ji, Kui and Kwon, HyunKyoung The trace of the curvature determines similarity. Stud. Math.236, No. 2, 193-200 (2017).
(13)Ji, Kui, Jiang, Chunlan, Dinesh Kumar Keshari, Gadadhar Misra, Rigidity of the flag structure for a class of Cowen-Douglas operators. J. Funct. Anal. 272 (2017), no. 7, 2899–2932
(14)Jiang, Chunlan, Ji, Kui, Gadadhar Misra, Classification of quasihomogeneous holomorphic curves and operators in the Cowen-Douglas class. J. Funct. Anal. 273 (2017), no. 9,2870–2915.
(15)Ji, Kui. Curvature formulas of holomorphic curves on C*-algebras and Cowen-Douglas operators. Complex Anal. Oper. Theory 13 (2019), no.4, 1609–1642.
(16)Ji,Kui Jaydeb Sarkar, Similarity of quotient Hilbert modules in the Cowen–Douglasclass, European Journal of Mathematics,5 (2019), no. 4, 1331–1351.
(17)Tian, Liang, Guo, Wei and Ji, Kui, A note on a subclass of Cowen-Douglasoperators, Acta Mathematica Sinica, English Series, 35 (2019), no. 11, 1795–1806.
(18)Ji, Kui, Hyun-Kyoung Kwon, and Xu, Jing, N-hypercontractivity and similarity of Cowen-Douglas operators, Linear Algebra Appl. 592 (2020),20–47.
(19)Jiang, Chunlan, Ji, Kui, Integral curvature and similarity of Cowen-DouglasOperators, In: Curto R.E., Helton W., Lin H., Tang X., Yang R., Yu G. (eds)Operator Theory,Operator Algebrasand Their Interactions with Geometry and Topology. Operator Theory: Advances and Applications, 278 (2020),373-390.
(20)Ma,Zhenhua, Ji, Kui and Li, Yucheng, Compact operators under Orlicz functions, Indian Journal of Pure and Applied Mathematics, 51(2020), 1633–1649.
(21)Hou, yingli, Ji, Kui and Linlin, Zhao, Factorization of generalized holomorphic curve and homogeneity of operators, Banach. J. Math. Anal.15, 43 (2021).
(22)Jiang, Chunlan, Ji, Kui and Wu, Jinsong, Similarity Invariants of Essentially normal Cowen-Douglas Operators and Chern Polynomials , Israel Journal of Mathematics,248,(2022)229–270.
(23)Ji,Kui and Ji, Shanshan, The metrics of Hermitian holomorphic vector bundles and the similarity of Cowen-Douglas operators,Indian Journal of Pure and Applied Mathematics, 53 (2022), no. 3, 736–749.
(24)Ji, Kui, Hyun-Kyoung Kwon, Jaydeb Sarkar,and Xu, Jing, A subclass of the Cowen-Douglas class and similarity, Mathematische Nachrichten, to appear.
(25)Jiang,Chunlan, Ji, Kui and Dinesh Kumar Keshari, Geometric Similarity invariants of Cowen-Douglas Operators, Journal of Noncommutative Geometry, to appear.
(26)Ji,Kui and Ji, Shanshan, A note on unitary equivalence of operators acting onreproducing kernel Hilbert spaces, Houston Journal of Mathematics, to appear.
(27)Hou, Yingli, Ji, Kui, Ji, Shanshan and Xu, Jing, Geometry of holomorphic vector bundles and similarity of commuting operator tuples,Journal of Operator Theory, to appear.
(28)Jiang,Chunlan, Fang, Junsheng and Ji Kui, Cowen Douglas operators and the third of Halmos' ten problems, arXiv:1904.10401.
(29) Ji,Kui, Ji, Shanshan and Xu, Jing On the similarity of restriction of the operator to an invariant subspace,arXiv:2012.13535.
(30)Ji, Kui, Hyun-Kyoung Kwon, Ji, Shanshan and Xu, Jing, The Cowen-Douglas theory for operator tuples and similarity, in prepare.