自然单位制

粒子物理学中普遍采用的一种特殊的单位制

自然单位制是粒子物理学中普遍采用的一种特殊的单位制。在微观现象的研究中所遇到的物理量,都是直接有微观含义的物理量,或者是通过统计性质与微观含义相联系的物理量。

基本物理量
微观物理学中涉及的基本物理量原有长度、时间、质量、电荷和温度等五种,为了减少独立的基本物理量的数目,利用库仑定律并规定真空的介电常数为无量纲的数1或1/4π来定义电荷,从而使电荷不再是基本物理量。在粒子物理学中,考虑到所处理问题都属于微观高速运动范围,利用三个普适常数来减少独立的基本物理量的个数,从而把独立的量纲减少到只有一种。
使用方法
自然单位制最常见的定义法是设定单位为1。例如,很多自然单位制会定义光速c = 1。假设速度 v 是光速的一半,则从方程 v = c / 2 与 c = 1 ,可以得到结果 v = 1 / 2。方程 v = 1 / 2 的意思为,采用自然单位制测量得到的速度 v 的数值为 1 / 2 ,或速度 v 是自然单位制的单位速度的一半。
方程 c = 1 可以带入任意方程。例如,爱因斯坦方程可以重写为采用自然单位制的 。这方程的意思为,粒子的静能量,采用自然单位制的能量单位,等于粒子的静质量,采用自然单位制的质量单位。
公式
(G*k)/c^4 [m/K]
m,s,C,K→kg:
c^2/G [kg/m]
c^3/G [kg/s]
1/(G*4*π*(ε0))^0.5 [kg/C]
k/c^2 [kg/K]
m,kg,C,K→s:
1/c [s/m]
G/c^3 [s/kg]
((G/(4*π*(ε0)))^0.5)/c^3 [s/C]
(G*k)/c^5 [s/K]
m,kg,s,K→C:
c^2/((G/(4*π*(ε0)))^0.5) [C/m]
(G*4*π*(ε0))^0.5 [C/kg]
c^3/((G/(4*π*(ε0)))^0.5) [C/s]
(k*(G*4*π*(ε0))^0.5)/c^2 [C/K]
m,kg,s,C→K:
c^4/(G*k) [K/m]
c^2/k [K/kg]
c^5/(G*k) [K/s]
c^2/(k*(G*4*π*(ε0))^0.5) [K/C]
常数
利用玻耳兹曼常数 k=(1.380662±0.000044) ×10-16erg/K=(8.61735±0.00028)×10-11 MeV/K,规定其值为无量纲的1,这样温度和能量将具有同一量纲,从而可以用同一单位来度量。这样规定后,原有的温度与能量单位的换算关系为:1eV=(11604.50±0.38)K。利用真空光速с=299792458m/s,规定其值为无量纲的1,这样时间和长度将具有同一量纲,从而可以用同一单位来度量,这样规定后,原有的时间和长度单位的换算关系为:1s=299792458m,利用普朗克常数h=(1.0545887±0.0000057)×10-27erg·s=(6.582173±0.000017)×10^(-22)MeV·s,规定其值为无量纲的1,这样时间和能量的倒数将具有同一量纲,从而可以用同一单位来度量。这样规定后,原有的时间和能量单位之间的关系为:1MeV-1= (6.582173±0.000017)×10^(-22)s。
经过以上的规定,只剩下一种独立的量纲,它可以选作能量、长度、时间,或其他任何一种有量纲的物理量。以这种物理量的单位作为基本单位导出其他物理量的单位,这就是自然单位制。
自然单位制中只有一种独立的量纲,相应地只有一种基本单位,但并未统一规定取哪个单位为基本单位。在粒子物理学中,根据实际工作的需要,常选能量为基本量纲,选能量的单位MeV或GeV为基本单位。在这样的选取下,质量也取MeV或GeV为单位,长度和时间都取MeV-1或GeV-1为单位,角动量为无量纲的量。有时根据需要也用fermi(10-131cm)作为长度的单位,它与能量单位之间的关系为:1fermi=(5.0676896±0.0000131)GeV-1。
精细结构常数 α=1/(137.03604±0.00011)在自然单位制中的表达式对应于两种定义电荷的方式分别为α=e2/4π和α=e2,即在自然单位制中为无量纲的量。
优点和缺点
国际单位制或其它单位制比较,自然单位制有优点,也有缺点:
简化方程:借着设定基本物理常数为1,含有这些常数的方程会显得更为简洁,大多时候会更容易了解。例如,在狭义相对论里,能量与动量的关系式 E^2 = p^2*c^2 + m^2*c^4 似乎相当冗长,而 E^2 = p ^2+ m^2 显得简单多了。
物理诠释:自然单位制已经自己具备了量纲分析功能。例如,普朗克单位制的设计,已经囊括了量子力学和广义相对论的一些性质。大约在普朗克长度的尺度,量子引力效应绝非凑巧地会开始变得重要。同样地,在设计原子单位制时,已经考虑到电子的质量与电量。因此,描述氢原子的电子轨域的玻尔半径理所当然地成为原子单位制的长度单位。
不需原器:“原器”(prototype)是一种用来定义单位的真实物体,例如国际千克原器(International Prototype Kilogram)是一块存放于法国国际计量局的铂铱合金圆柱体,其质量为1公斤。依赖原器有很多缺点:不可能实际复制出完全一样的原器,真实物体会遭受腐蚀损坏,核对质量必需亲自到法国跑一趟。自然单位制不需要参照到原器。
计量精密度较低:当初设计国际单位制时,一个主要目标是能够适用于精密测量。例如,因为这跃迁频率可以用原子钟科技来精密复制,时间单位是使用铯原子的原子跃迁频率来定义。自然单位制通常不是建立于可以在实验室精密复制的物理量。所以,自然单位制的基本单位所具有的精密位数会低于国际单位制。例如,普朗克单位制所使用的重力常数G ,在实验室里只能测量至4个有效数字
意义过于笼统:设想采用普朗克单位制的方程 a = 10。假若 a 代表长度,则这方程的含意是 a = 10m ;假若 a 代表质量,则这方程的含意是 a = 10kg。所以,假若变量 a 缺乏明确定义,则这方程很有可能被误解。从另一个角度来看,物理学者有时候会故意利用到这笼统性质。这时,自然单位制显得特别有用。例如,在狭义相对论里,时间与空间的关系非常密切,假若,能够不区分某变量所代表的是时间还是空间,或者,使用同一个矢量变量就可以一起代表时间与空间,这添加的功能会带给理论学者很大的便利。
评价
粒子物理学中研究的主要是微观高速现象,在研究中经常要考虑和处理量子效应和相对论效应,它们分别由h和с体现。在粒子物理学中采用自然单位制可以把物理量和物理规律的物理意义比较直接地体现出来并使计算过程大大简化。例如,在自然单位制中速度是无量纲的量,其数值的含义是等于以真空光速为单位所得到的值;又如,对于不稳定粒子,表现为有一个平均寿命τ,量子效应又决定其能级有一定宽度1/τ,在自然单位制中,它们的关系简单地为τ*1/τ=1。在与粒子物理学密切有关的其他物理学科中,有时也采用自然单位制。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市