软交换

为下一代网络具有实时性要求的业务提供呼叫控制和连接控制功能

软交换是一种功能实体,为下一代网络NGN提供具有实时性要求的业务的呼叫控制和连接控制功能,是下一代网络呼叫与控制核心。 简单地看,软交换是实现传统程控交换机的“呼叫控制”功能的实体,但传统的“呼叫控制”功能是和业务结合在一起的,不同的业务所需要的呼叫控制功能不同,而软交换是与业务无关的,这要求软交换提供的呼叫控制功能是各种业务的基本呼叫控制。

基础
软交换
软交换技术是NGN网络的核心技术,为下一代网络(NGN)具有实时性要求的业务提供呼叫控制和连接控制功能。软交换技术独立于传送网络,主要完成呼叫控制、资源分配、协议处理、路由、认证、计费等主要功能,同时可以向用户提供现有电路交换机所能提供的所有业务,并向第三方提供可编程能力。
提出
软交换的概念最早起源于美国。当时在企业网络环境下,用户采用基于以太网的电话,通过一套基于PC服务器的呼叫控制软件(Call Manager、Call Server),实现PBX(Private Branch eXchange,用户级交换机)功能(IP PBX)。对于这样一套设备,系统不需单独铺设网络,而只通过与局域网共享就可实现管理与维护的统一,综合成本远低于传统的PBX。由于企业网环境对设备的可靠性、计费和管理要求不高,主要用于满足通信需求,设备门槛低,许多设备商都可提供此类解决方案,因此IP PBX应用获得了巨大成功。受到IP PBX成功的启发,为了提高网络综合运营效益,网络的发展更加趋于合理、开放,更好的服务于用户。业界提出了这样一种思想:将传统的交换设备部件化,分为呼叫控制与媒体处理,二者之间采用标准协议(MGCP、H248)且主要使用纯软件进行处理,于是,Soft Switch(软交换)技术应运而生。
发展
软交换概念一经提出,很快便得到了业界的广泛认同和重视,ISC(International Soft Switch Consortium)的成立更加快了软交换技术的发展步伐,软交换相关标准和协议得到了IETF、ITU-T等国际标准化组织的重视。
根据国际Soft Switch论坛ISC的定义,Soft Switch是基于分组网利用程控软件提供呼叫控制功能和媒体处理相分离的设备和系统。因此,软交换的基本含义就是将呼叫控制功能从媒体网关传输层)中分离出来,通过软件实现基本呼叫控制功能,从而实现呼叫传输与呼叫控制的分离,为控制、交换和软件可编程功能建立分离的平面。软交换主要提供连接控制、翻译和选路、网关管理、呼叫控制带宽管理、信令、安全性和呼叫详细记录等功能。与此同时,软交换还将网络资源、网络能力封装起来,通过标准开放的业务接口和业务应用层相连,可方便地在网络上快速提供新的业务。
思科系统亚太区NGN/VoIP首席技术顾问殷康认为,尽管“软交换”是NGN讨论的热点,但是人们对它的概念仍然有些似是而非。他说:“‘软交换’这个术语可以说是从Soft switch翻译而得。Soft switch这一术语借用了传统电信领域PSTN网中的‘硬’交换机‘switch’的概念,所不同的是强调其基于分组网上呼叫控制与媒体传输承载相分离的含义。国内一开始有人将Soft switch译为‘软交换’。但是‘软交换’这个翻译术语含义不够十分明晰,单从字面上看很难使人理解它究竟是设备系统概念还是体系概念。”
殷康指出,我国电信业历来将名词属性的、设备概念范畴的switch译为“交换机”,而将动名词属性的switching 译为“交换”。X25 switch译为X25交换机,ATM switch译为ATM交换机,L2/L3 switch 译为二层/三层交换机。因此他建议,为学术研讨的严肃性, 应该将soft switch更为确切地译为“软交换机”。这只是翻译概念上的问题。不过从某一方面来说,对于软交换概念的模糊,也反映了产业界对于软交换认识上在某些方面依旧存在偏差,存在着过分强调某一方面的能力,或者是过分夸大了软交换功能的情况。甚至可以说在很长的一段时间,软交换被人为地“神话”了,它被认为是一种代表着通信行业的未来,似乎无所不能的技术。
软交换是一种正在发展的概念,包含许多功能。其核心是一个采用标准化协议和应用编程接口(API)的开放体系结构。这就为第三方开发新应用和新业务敞开了大门。软交换体系结构的其它重要特性还包括应用分离(de-coupling of applications)、呼叫控制和承载控制。
基本要素
软交换技术区别于其它技术的最显著特征,也是其核心思想的三个基本要素是:
生成接口
软交换提供业务的主要方式是通过API与“应用服务器”配合以提供新的综合网络业务。与此同时,为了更好地兼顾现有通信网络,它还能够通过INAP与IN中已有的SCP配合以提供传统的智能业务。
接入能力
软交换可以支持众多的协议,以便对各种各样的接入设备进行控制,最大限度地保护用户投资并充分发挥现有通信网络的作用。
支持系统
软交换采用了一种与传统OAM系统完全不同的、基于策略(Policy-based)的实现方式来完成运行支持系统的功能,按照一定的策略对网络特性进行实时、智能、集中式的调整和干预,以保证整个系统的稳定性和可靠性。
作为分组交换网络与传统PSTN网络融合的全新解决方案,软交换将PSTN的可靠性和数据网的灵活性很好地结合起来,是新兴运营商进入话音市场的新的技术手段,也是传统话音网络向分组话音演进的方式。在国际上,软交换作为下一代网络(NGN)的核心组件,已经被越来越多的运营商所接受和采用。
体系结构
软交换控制设备(Soft switch Control Device)这是网络中的核心控制设备(也就是我们通常所说的软交换)。它完成呼叫处理控制功能、接入协议适配功能、业务接口提供功能、互连互通功能、应用支持系统功能等。
业务平台
完成新业务生成和提供功能,主要包括SCP和应用服务器
信令网关
1、七号信令网关设备。传统的七号信令系统是基于电路交换的,所有应用部分都是由MTP承载的,在软交换体系中则需要由IP来承载。
2、ISDN信令网关。是一个数字电话网络国际标准,是一种典型的电路交换网络系统。在ITU的建议中,ISDN是一种在数字电话网IDN的基础上发展起来的通信网络,ISDN能够支持多种业务,包括电话业务和非电话业务。
3、SIP信令网关。是由IETF(Internet Engineering Task Force,因特网工程任务组)制定的多媒体通信协议。基于IP协议的SIP利用了IP网络,固定网运营商也会逐渐认识到SIP技术对于他们的深远意义。
媒体网关
完成媒体流的转换处理功能。按照其所在位置和所处理媒体流的不同可分为:中继网关(Trucking Gateway)、接入网关(Access Gateway)、多媒体网关(Multimedia Service Access Gateway)、无线网关(Wireless Access Gateway)等。
IP终端
主要指H.323终端和SIP终端两种,如IP PBX、IP Phone、PC等。
其它支撑
AAA服务器、大容量分布式数据库、策略服务器(Policy Server)等,它们为软交换系统的运行提供必要的支持。
基于软交换技术的网络结构软交换是下一代网络的核心设备之一,各运营商在组建基于软交换技术的网络结构时,必须考虑到与其它各种网络的互通。在下一代网络中,应有一个较统一的网络系统结构。
软交换与应用/业务层之间的接口提供访问各种数据库、三方应用平台、功能服务器等接口,实现对增值业务、管理业务和三方应用的支持。其中:软交换与应用服务器间的接口可采用SIP、API,如Parlay,提供对三方应用和增值业务的支持;软交换与策略服务器间的接口对网络设备工作进行动态干预,可采用COPS协议;软交换与网关中心间的接口实现网络管理,采用SNMP;软交换与智能网SCP之间的接口实现对现有智能网业务的支持,采用INAP协议。
通过核心分组网与媒体层网关的交互,接收处理中的呼叫相关信息,指示网关完成呼叫。其主要任务是在各点之间建立关系,这些关系可以是简单的呼叫,也可以是一个较为复杂的处理。软交换技术主要用于处理实时业务,如话音业务、视频业务、多媒体业务等。
软交换之间的接口实现不同与软交换之间的交互,可采用SIP-T、H.323或BICC协议
技术原理
技术定义
软交换的技术定义可以描述为:
·它是一种提供了呼叫控制功能的软件实体
· 它支持所有现有的电话功能及新型会话式多媒体业务
·它采用标准协议(如SIPH.323MGCP、MEGACO/H.248SIGTRAN以及各种其它的数据及ITU协议)
· 它提供了不同厂商的设备之间的互操作能力
·它与下列一种或多种组件配套使用
·特性服务器(例如提供CLASS业务)
· 应用服务器(例如提供多媒体业务
·媒体服务器(如提供数据流媒体、会议和广告等业务)
·管理、供应和收费/计费接口。
也许从业务角度来看,可以给出一个更形象的定义:
软交换是一种针对与传统电话业务和新型多媒体业务相关的网络和业务问题的解决方案。它能够减少资本和运营支出,提高收入。
原理目标
软交换技术是一个分布式的软件系统,可以在基于各种不同技术、协议和设备的网络之间提供无缝的互操作性,其基本设计原理是设法创建一个具有很好的伸缩性、接口标准性、业务开放性等特点的分布式软件系统,它独立于特定的底层硬件/操作系统,并能够很好地处理各种业务所需要的同步通信协议,在一个理想的位置上把该架构推向摩尔曲线轨道。并且它应该有能力支持下列基本要求:
(1)独立于协议和设备的呼叫设备的呼叫处理和/同步会晤管理应用的开发。
(2)在其软交换网络中能够安全地执行多个第三方应用而不存在由恶意或错误行为的应用所引起的任何有害影响。
(3)第三方硬件销售商能增加支持新设备和协议的能力。
(4)业务和应用提供者能增加支持全系统范围的策略能力而不会危害其性能和安全。
(5)有能力进行同步通信控制,以支持包括帐单、网络管理和其他运行支持系统的各种各样的后营业室系统。
(6)支持运行时间捆绑或有助于结构改善的同步通信控制网络的动态拓扑。
(7)从小到大的网络可伸缩性和支持彻底的故障恢复能力。
软交换的实现目标是在媒体设备和媒体网关的配合下,通过计算机软件编程的方式来实现对各种媒体流进行协议转换,并基于分组网络(IP/ATM)的架构实现IP网ATM网、PSTN网等的互连,以提供和电路交换机具有相同功能并便于业务增值和灵活伸缩的设备。
交换协议
软交换所使用的主要协议软交换体系涉及协议非常众多,包括H.248、SCTPISUP、TUP、INAP、H.323、RADIUSSNMP、SIP、M3UA、MGCP、BICCPRIBRI等。国际上,IETF、ITU-T、Soft Switch Org等组织对软交换及协议的研究工作一直起着积极的主导作用,许多关键协议都已制定完成,或趋于完成。这些协议将规范整个软交换的研发工作,使产品从使用各厂家私有协议阶段进入使用业界共同标准协议阶段,各家之间产品互通成为可能,真正实现软交换产生的初衷——提供一个标准、开放的系统结构,各网络部件可独立发展。在软交换的研究进展方面,我国处于世界同步水平。信息产业部“网络与交换标准研究组”在1999年下半年就启动了软交换项目的研究,已完成了《软交换设备总体技术要求》。下面对几个主要协议做一简单介绍。
248/MEGACO
H.248和MEGACO协议均称为媒体网关控制协议,应用在媒体网关和H.248/MEGACO与软交换设备之间。两个协议的内容基本相同,只是H.248是由ITU提出来的,而MEGACO是由IEFT提出来的,且是双方共同推荐的协议。它们引入了Termination(终端)和Context(关联)两个抽象概念。在Termination(终端)中,封装了媒体流的参数、MODEM和承载能力参数,而Context(关联)则表明了在一些Termination(终端)之间的相互连接关系。H.248/MEGACO通过Add、Modify、Subtract、Move等8个命令完成对Termination(终端)和Context(关联)之间的操作,从而完成了呼叫的建立和释放。
控制协议
媒体网关控制协议(MGCP)是由IEFT提出来的,是简单网关控制协议(SGCP)和IP设备控制协议(IPDC)相结合的产物。MEGACO协议是对MGCP协议的进一步改进、完善和提高,MGCP协议可以说是一个比较成熟的协议,协议的内容与MEGACO协议比较相似。软交换系统设备大都支持该协议,其不足也慢慢表现出来,将来可能要被H.248/MEGACO协议所取代。
在软交换系统中,MGCP协议与H.248/MEGACO协议一样,应用在媒体网关和MGCP终端与软交换设备之间,通过此协议来控制媒体网关和MGCP终端上的媒体/控制流的连接、建立和释放。
初始协议
会话初始协议(SIP)是IETF提出的在IP网上进行多媒体通信的应用层控制协议。以Internet协议(HTTP)为基础,遵循Internet的设计原则,基于对等工作模式。利用SIP可实现会话的连接、建立和释放,并支持单播组播和可移动性。此外,SIP如果与SDP配合使用,可以动态地调整和修改会话属性,如通话带宽、所传输的媒体类型及编解码格式。其具体内容可参见IETFRFC 2543bis。
在软交换系统中,SIP协议主要应用于软交换与SIP终端之间,也有的厂家将SIP协议应用于软交换与应用服务器之间,提供基于SIP协议实现的增值业务。总的来说,SIP协议主要应用于语音和数据相结合的业务,以及多媒体业务之间的呼叫建立与释放。
消息机制
命令(Command) :是H.248消息的主要内容,实现对关联和终端属性的控制,包括指定终端报告检测到的事件,通知终端使用什么信号和动作,以及指定关联的拓扑结构等。H.248协议定义了八个命令:
–ADD : 增加一个Termination到一个Context中,当不指定Context ID时(或第一次增加一个Termination),将生成一个Context,然后加入Termination。
–MODIFY : 修改一个Termination的属性、事件和信号参数。如:修改终端的编码类型、通知终端检测摘机/挂机事件、修改终端的拓扑结构(双向/单向/隔离等)。
–SUBSTRACT : 从一个Context中删除一个Termination,同时返回Termination的统计状态。如果Context中再没有其它的Termination,将删除此Context。
–NOTIFY : 允许MG将检测到的事件通知给MGC。 例如:MGW将检测到的摘机事件上报给MGC。
–MOVE : 将一个Termination从一个Context转移到另一个Context中。
–AUDITVALUE : 返回Termination的当前的Properties、Events、Signals、Statistics。
–AUDITCAPABILITIES: 返回MG中Termination特性的能力集。
–SERVICECHANGE : 允许MG向MGC通知一个或者多个终端将要脱离或者加入业务。用来MG向MGC进行注册、重启通知。MGC可以使用ServieceChange对MG进行重启。MGC可以使用ServiceChange通知MG注销一个或一部分的Termination。
NGN
中国电信集团公司总工程师韦乐平指出,泛义的NGN包容了所有新一代网络技术,狭义的NGN就是指软交换。在国内,人们往往把NGN与软交换联系在一起,甚至将它们等同起来。实际上,由国际上有关NGN的研究与行动可以看出,NGN包含的内容非常广泛。
起源
1996年,美国政府与大学分别牵头提出下一代Internet行动计划(NGI)与Internet2。另外,国际上还有很多政府部门、行业团体、标准化组织等机构参与的NGN行动计划,如IETF的下一代IP、3GPP与UMTS论坛的下一代移动通信加拿大的CANET3、欧盟的NGN行动计划等。这些NGN计划与行动很多与软交换没有什么关系,它们有的是专门研究本领域的网络技术发展(例如IETF的“下一代IP”研究的是如何从IPv4向IPv6过渡),有的则是包容了多种网络技术与应用的综合研究项目。
当然,国际上也有一些专门研究针对话音网的下一代组网技术,例如Telcordia(原Bellcore)提出的基于软交换的NGN方案。但是说NGN就是软交换,无疑是很值得商榷的。根据国内所提出的NGN解决方案,作为其最重要的特征之一,软交换平台的开放性可以为运营商提供一个灵活快捷的新业务开发模式,让NGN真正成为业务驱动的网络。
“但是软交换并不就是NGN,甚至可以说,软交换不一定就是NGN的核心技术。”国家IP与多媒体标准研究组主席蒋林涛指出。他认为:“NGN涉及的核心技术存在两个层次:一个是承载网层面,备选的核心技术有TDM、ATM、IP等,软交换并不在其中;一个是业务网层面,软交换技术将发挥核心的作用。”未来VoIP的核心技术将是软交换。软交换是NGN中语音部分,即下一代电话业务网(包括固定网、移动网)中的核心技术,但是NGN所要承载的业务模式今天还不是很清楚,我们很难断定VoIP就是未来NGN的核心通信业务。因此有业内人士认为,不能简单地断定,软交换就是NGN的核心技术。
那么认为NGN就是软交换,或是NGN寄希望于单一的“软交换”综合性设备,会带来什么样的后果呢?殷康认为,这势必会造成NGN解决方案缺乏可行的整体系统网络效益和目标,使得NGN的思考和讨论局限于单一类别设备以及相关技术的局部结构体系和范畴。更严重的是,“软交换”的设备特征和技术特征自身只能提供非常有限的“网络”概念和功能,这很可能造成NGN的组网方式和其总体网络体系结构成为无解之惑。
发展
有资料指出,美国的Bell Atlantic、Level3、英国电信、英国大东、德国电信、日本NTT等很多运营商都开展了NGN试验,也取得了一些阶段性的成果。由于软交换本身的成熟性,它们的试验绝大部分限于软交换的汇接功能,能够提供一些简单的多媒体业务,但大部分都是单域的小规模的网路。
UT 斯达康首席科学家杨景认为,NGN的核心应该体现在跨网络业务上,而不是开放业务接口。他说:“与其说NGN是一个交换网,还不如说它是一个基于IP基础设施的业务网。”中国电信软交换试验网的技术也要求在CLASS4 (长途链路)以及CLASS5( 接入层)都实现软交换机制。
软交换机体现的是通过媒体控制协议MGCP/H248技术来实现呼叫控制与媒体传输相分离的思想,软交换机概念的提出使NGN的语音业务功能和与传统PSTN网的交换机功能可以完全透明地兼容,从根本上确保了IP电话技术能够完全替代PSTN网络中的交换机,”殷康说,“软交换机是NGN的重要组成部分,但它更多的是关注在IP网中呼叫控制功能的设备和系统,其本身并不能构成特别的整体组网技术机制和网络体系构架。完全围绕软交换机为核心进行相互联接的组网方式没有太大试验和探讨价值。它限定了NGN只能是软交换机静态配置的、互为联接的,也即是所谓全平面网的‘无网模式’。”
殷康认为,‘无网模式’的NGN体系结构只能支持一个或几个软交换机,没有可扩展性也没有灵活性,是不适合规模运营的。软交换机必须具有与“网络”相联的能力。这个“网络”就是NGN的多媒体信令网。他说:“软交换机之间通过NGN多媒体信令不仅可以保障无限的可扩展性,选路结构的动态和灵活性,还真正实现了‘网络就是交换机’的目标。”
“下一代网的组网是采用分层的多媒体信令网和平坦的媒体流结构,多媒体信令网通过多媒体信令协议体系和多媒体信令传送点网元来实现。由于多媒体信令网的主要功能不涉及媒体控制,所以,一般不由软交换机组成,而是由专门的多媒体信令服务器来构成。” 殷康说,“真正意义的下一代网既需要智能端点业务的创新繁荣,又需要其系统可规模经营管理。就目前的技术成熟和发展来看,ITU-H323协议、IETF-SIP协议和MGCP/H248协议为特征的软交换机等三种技术都是IP电话通信和下一代网的实现手段。这三种技术各有区别和特长需要相辅相成,只有采用融合三种技术的网络架构体系和实现手段,才为上策。”
许多学者很早以前就指出,软交换机也可以看成是在H323和SIP体系下,智能网关分解的结果。它在下一代网中承担着区域或端局系统平台的重任,肩负着同时控制网络接入话务和控制PSTN网络边缘互联话务的功能。但是,软交换机仍然需要其他关键技术和设备来协同工作以确保可行的QoS和网络安全方案。软交换机提供现有电路交换机的各种语音业务,并支持语音、数据、视频融合多媒体端点新业务和多样化的第三方业务(包括视频电话,视频电话会议,PC-Phone),但软交换机并不应看成是通用的数据、视频业务和应用的控制平台。因此,只有对软交换机在NGN中给予适当的定位,使其担当恰如其分的角色,才是发挥其在NGN中重要和关键的功能的正确方法。
驱动优势
降低成本
今天的大多数网络运营商最为关注的是保证其现有业务的安全。话音和拨号业务仍是他们的主要收入来源,且流量还会继续增长。虽然宽带接入正在增长,但在大多数市场中仍然非常有限。与此同时,解除管制和竞争导致价格下降并侵蚀了运营商的利润。这些因素,再加上资金有限,迫使运营商不得不降低运营和资本开支(OPEX和CAPEX)。
然而在实现这些节约的过程中,运营商投资于未来技术显然比利用现有技术优化网络更好一些,虽然许多情况下后者也能够实现类似的节约。这一决策主要是从商业而非技术方面考虑的。
新的收入
只降低成本还远远不够。虽然通过提供传统业务来降低成本可以带来保护运营商的利润,但是创造和部署能够产生收入的新业务才是固定电话业务提供商得以生存的关键。从图1中的图表可以看出,固定电话收入正在“缩水”。
基本业务(如添加/取消媒体、演示、消息传递、以及媒体组合等)将被整合,从而为最终用户提供可以任何接入形式访问的会话式多媒体业务。这些业务可能包括视频会议可视电话话音增强式游戏以及由用户控制的呼叫处理等。
改良方法
普遍观点认为:网络运营商的发展方向将是基于分组交换的多业务网络环境,由软交换提供呼叫和会话控制。
然而,商业形势下,向软交换环境融合存在着巨大的挑战。如果现有基础设施不能有效满足其目标应用和客户的需求,它根本不可能存在。任何替代技术都必须能够与现有解决方案一样、或更出色地处理某一应用--在功能和/或价格方面更具优势。另外,新的业务模式必须证明能够满足对现有技术所支持业务的需求。但是,由于电话仍然是运营商的主要收入来源,所以不能提供全套PSTN业务和电信级服务质量(QoS)的PSTN替代解决方案不能获得采用。运营商们不能拿自己的电话客户和收入去冒险。
通信服务提供商需要采取渐进式发展方法,把软交换技术作为经济高效的宽带多业务网络的一部分进行部署。
软交换
无论从技术和商业角度都可以看到软交换还面临许多复杂要求,显然如上所述,软交换仍处在发展阶段。爱立信提出一个术语框架,以便我们讨论其演进。
软交换实际上是从软交换系统中分离出来的呼叫或会话控制器。
软交换系统通常建立在传统呼叫控制平台上(具有支持传统电话业务的适当媒体网关)。它基于商业平台,是支持多媒体和基本话音业务的适当媒体网关
多功能软交换解决方案满足了运营商的两种需求:支持传统电话业务和任何形式的多媒体业务组合。具体解决方案由客户的具体情况和需求而定。
软交换网络体系结构包含一般的体系结构基础。其中包括网元(如媒体和信令网关、业务创建环境)部署;网元之间的交互和信令传递;与边缘节点和宽带接入之间的关系;对IP基础设施服务质量(QoS)的要求;以及安全、运营、维护和供应等。
基于这种框架,软交换系统将会形成两大分支,分别沿着两条不同的轨道发展:一种处理新型多媒体业务;另一种处理和控制完全的PSTN业务。
选择
爱立信多业务网络高级战略家Svante Bjorklund指出,软交换实际上就是从软交换系统中分离出来的呼叫或会话控制器。他说:“从业务角度来看,可以给软交换一个更形象的定义:它是一种针对与传统电话业务和新型多媒体业务相关的网络和业务问题的解决方案。”
以“分离交换和控制”为核心思想的软交换打破了旧有的电信网络结构,为数据和话音的融合、催生大量新业务做好了充足准备,这也是软交换被广泛认为是“NGN的核心”的原因。
除了技术上的因素,业内人士认为,电信市场的开放与竞争是运营商接受软交换最根本的原因。2001年开始,国内运营商便开始了软交换的商用实验。中国电信南北拆分以及“5+1”新格局的形成,更是为软交换的发展提供了机会。中国电信和中国网通都需要在对方“领地”建网,传统的PSTN无疑不是最佳之选,包括软交换技术在内的全IP分组交换网络将成为运营商的首选。对于缺少固网资源的运营商以及新兴的电信运营商,拥有可以提供新颖、丰富的业务种类的网络才可以在激烈的市场竞争中胜出,软交换网络也是一种不错的选择。
从2002年初开始,网通宽带电话项目工程在全国8个城市同时进行,2002年底以宁波网通为代表的,可运营、可管理、可商用的典型模式得到了认可,并正式进入规模商用。到了2002年,6大运营商中已经有5家投入了软交换实质性的测试和商用。
一方面,电信业长期迅猛的发展使得现有的、已经发展成熟的PSTN技术,传统VoIP技术等跟不上用户越来越多的业务需求,业务和终端设备的客户化与个性化,管理与维护的统一便捷成为运营商提高收益的重要条件。另一方面,软交换技术汲取了智能网和Internet两方面的优势,从一开始就体现了其技术的成熟性与先进性,采用分层网络模型,有效地解决了现有通信网络的演进和融合问题,顺应了网络建设和发展的两大趋势:一是不同形态的通信网络开始融合,二是业务运营和网络运营逐渐分离。上述因素都推动了软交换在国内的发展。
演进
虽然运营商和厂商都非常看好软交换,但是它们也开始从更现实和更实用的角度,来看待软交换如何能够使现有的单业务网络移植到未来的全IP网络软交换技术的发展,必须满足几个条件: 不影响现有网络的发展,为运营商提供投资成本更低,性价比更高的切实可行的方案。
软交换系统可以承载在LAN、WLAN、CATV、ATM等数据网络上,甚至包括DDN、微波网络、3.5G等,它使得运营商能够充分利用已有的网络资源终端接入方式灵活多样,可以提供TG/SG、AG、IAD、MSAG、Cable IAD等各种接入,与现有的固定、移动、多媒体终端进行互通;尤其对ADSL、PHS、WLAN用户的接入,对争取现有网络的用户有很强的竞争力;软交换系统的终端设备小型化多样化,大大提高了工程的实际放装率,为运营商节省大量的流动资金,设备回收时间明显缩短。就市场估计,软交换系统的投资回收期在3年以内,相比之下3G的投资回收时间为8年。
软交换系统还提供了全新的运营模式。初期可以在多个区域同时进行,采用统一的软交换核心控制设备。当某个区域的用户发展到一定数量后,可以单独配置相应的控制设备及运营支撑系统,形成独立的可运营系统。一些地区运营商与企业用户对于软交换网络提供的语音、数据、多媒体等统一业务的特点也很感兴趣,尤其是本地宽带运营商,在以往建设宽带网络时只能提供数据业务,而传统的语音电信业务还要由电信局来提供,大大降低了它们的市场竞争能力,而新的基于软交换的宽带网络,可以同时为用户提供其需要的所有电信服务。
与此同时,Svante Bjorklund等专家也指出,在商业形势下,向软交换环境演进依旧存在着一些挑战。今天的大多数运营商最为关注的是保证其现有业务的安全。话音和拨号业务仍是它们的主要收入来源,且流量还会继续增长。任何替代技术都必须能够与现有解决方案一样,或更出色地处理某一应用——在功能和/或价格方面更具优势。
Svante Bjorklund说:“解除管制与竞争都将导致价格下降并侵蚀了运营商的利润。这些因素,再加上资金有限,都会迫使运营商不得不降低运营和资本开支。只降低成本还远远不够。虽然通过提供传统业务来降低成本可以保护运营商的利润,但是创造和部署能够增加收入的新业务才是固定电话业务提供商得以生存的关键。运营商投资于未来技术显然比利用现有技术优化网络更好一些。”
他认为:“网络运营商的发展方向将是基于分组交换的多业务网络环境,由软交换提供呼叫和会话控制。”
过渡
基于上面的观点,Svante Bjorklund认为,他认为,真正使得软交换业务与众不同的特点是存在管理(presence management)功能,它允许用户通过软交换系统进行自主控制并轻松使用所有通信业务。他说:“由于在开始时极少使用新特性,对于大多数用户而言服务似曾相识,因此用户更容易接受新系统。随着时间的推移,用户将发现越来越多的新特性,而且很快就会离不开这些特性。”
开放API(如SIP 插件和Parlay)为应用服务提供商第三方应用开发商开辟了蕴藏巨大商机的新市场。大规模应用开发行业能够确保快速而经济高效地开发应用,并为市场提供更多创新应用。这将帮助运营商丰富其业务产品,减少客户的丢失,吸引更多用户,以及提高使用率和增加收入,”Svante Bjorklund说,“随着新业务的开发和在用户群中的部署,运营商可以在传统电话业务的收入基础上获得额外的收入。”
他认为,软交换的发展就是平衡早期市场占有率与新老业务采用率。将“达到极限”的传统电话业务与支持窄带宽带SIP业务的平台组合起来,有助于自始至终优化运营商的收入结构。不过他也特别指出,必须认识和考虑到创新性新业务使用率增长缓慢的现状。
其与3G
上海贝尔阿尔卡特副总裁谢铁林认为,3G网络的发展在很多方面应用了NGN下一代网络的技术。从网络结构、接口协议,业务以及业务开发各方面,3G与NGN的发展是协调一致的。在网络结构方面,NGN和3G中都提出了分层的网络结构;在接口协议方面,3G网络与NGN所采用的协议许多都是一致的,包括H.248/MEGAO协议、BICC协议、SIP协议、SIGTRAN协议;在业务方面,3G和NGN不仅提供的业务种类是相似的,例如各种多媒体业务,而且在业务的实现方式上也是类似的,3G和NGN都支持开放业务接口,所以二者在业务层面上是统一的,架构上也是一致的,也就是说,对于相似的业务,可以同时构建在NGN固定网和3G移动网络之上。软交换与3G网络的核心结构和业务模型十分吻合,为未来网络的完全融合提供了可能。Svante Bjorklund也指出,最理想情况是,多媒体软交换系统是构建在与3GPP相同的体系结构之上,并使用会话始发协议(SIP)。SIP是一种新兴的互联网标准,能够灵活地集成消息传递、存在业务、多媒体会议和实时通信。
很多厂商提供软交换解决方案时,都考虑了遵从3GPP体系架构设计,在多媒体域可以与3G核心网共享。中兴通讯网络事业部严华认为,软交换在国内的发展应该是:从语音业务着手,争取广泛的用户群;逐步发展多媒体业务,以提高用户附着力;然后适当引入移动业务,实现与现有移动业务的互通,扩大用户范围;最终实现移动多媒体综合业务,以及更多的未来网络新业务。
许可证
2003年春节前后,UT斯达康、爱立信、大唐都拿到了信息产业部颁布的软交换设备入网的试用许可证;在2002年,北电与华为获得了同样的入网试用证;中兴通讯更是在2001年就得到了信息产业部颁发的这张试用许可证。尽管只是试用的许可证,这些设备商还是非常高兴地宣扬了一把。因为这个许可证对于它们非常重要,国内运营商在进行NGN(下一代网络)试验以及试商用时,这张许可证就是它们进入的“门票”。
交换系统
多媒体软交换是为提供以下类型的业务和应用而设计的:
· 会话式多媒体--在两方或更多方之间同时使用多种媒体进行的实时、延迟敏感的多向通信,如可视电话或视频会议视频会议可以轻松处理媒体,在会话过程中添加或删除媒体
· 组合业务--会话业务结合信息相关应用,如目录信息或基于位置的业务(例如业务和白板的存在调用)
·会话业务与其它多媒体业务组合--如在线游戏结合可视电话或3D电话会议,组成包含社交活动的有趣而丰富多彩的业务。
支持这些类型的业务需要开放体系结构、API和协议。系统必须能够处理多媒体,包括实时视频、视频数据流、三维环绕立体声、数据(包括文本)、图像(如相片和图片)、以及传统但可以选择质量等级的话音
由于在开始时极少使用新特性,这样,就没有必要在这种平台上重复提供PSTN业务,事实上那样做是一种倒退。
此外,还需要通过互联网上的应用开发商社区以低成本进行应用开发和部署;同样还需要为新用户设备提供多种能力以进行媒体播放和用户输入。
理想情况是,多媒体软交换系统构建在与3GPP(第3代移动网络标准)相同的体系结构之上,并使用会话始发协议(SIP)。SIP是一种新兴的互联网标准,能够灵活地集成消息传递、存在业务、多媒体会议和实时通信(如电话)。它经过精心设计,采用模块化结构,以创新方法集成应用,可以扩展,从而支持新的技术。
使用SIP并在3GPP标准上构建体系结构具有许多重要优势。
首先,SIP是互联网社区的理想选择,基于文本的简单格式使应用开发商能够很快上手(例如,它比二进制格式的H.323更容易使用)。这意味着SIP能够支持更多的应用。
第二,在支持3G移动网络的3GPP体系结构上构建,这就可以使用一个平台为固定和移动用户提供通用的多媒体应用。
第三,SIP使用支持Web应用(如电子邮件和Web浏览器)的现有协议,同时H.323也可以或多或少地重新用于处理这些应用。这意味着在SIP环境中可以更轻松和平滑地进行互通。
爱立信确信SIP是对会话式多媒体通信进行会话控制的一种出色协议。与多媒体业务解决方案相比,新型多媒体软交换系统能够以更高的安全性和更优异的服务质量(QoS)提供多媒体业务,并灵活地进行计费。
传统电话软交换系统
100多年以来,传统电话一直是大型运营商的核心业务,而且电路交换机也在有线和移动网络中得到广泛部署。时分复用(TDM)交换技术是网络中最核心的技术之一,它具有集成应用、控制和连接平台,并且与接入和传统运营支持系统(OSS)密切相关。如果运营商大规模更换他们的TDM交换机,则不但可能失去收入丰厚的本地和汇接电话业务,而且还有为分离接入和OSS付出高昂成本的风险。
最近的标准化工作规定使用H.248和BICC等新信令协议把传统电路交换网络融合到分组交换网络。TDM交换机被撤销,连接平台也从中央处理器应用软件中分离出来。连接主要由分组基础设施(ATM或IP)来执行,其余的交换机则变成了电话服务器。电话服务器解决方案重新使用电话应用软件和处理器在多业务网络上无逢提供传统电话业务。
多功能软交换解决方案
软交换主要针对特定用户需求,并仅限于满足当前的运营商要求。因此为了充分利用新的市场机遇,需要提供多功能软交换解决方案。
随着新业务的开发和在用户群中的部署,运营商可以在传统电话业务的收入基础上获得额外的收入。
但是,必须认识和考虑到创新性新业务使用率增长缓慢的现状:移动电话和文本消息传递业务经历了5-10年之久才被大众市场广泛接受。包含更多功能的新业务将最终取代传统的电话业务;并且如上所述,个性化的存在管理将会加快这些新业务的流行。因此,在新平台上重新实施所有传统电话业务没有经济价值。此外,这将为现有业电话业务的服务透明度、服务质量以及收入带来风险。
另一方面,使用同一多功能软交换解决方案在彼此独立的呼叫或会话控制平台上分别实施传统电话业务和新型多媒体业务,这意味着可以在避免突然改变收入来源的同时迅速融合所有的传统业务。这还意味着拥有足够的时间等待从软交换系统的各个方面获得回报。此外,在QoS分组骨干上进行构建还意味着这种投资可以使OPEX和CAPEX降至最低,而不会失去任何新的多媒体商机。
采用多功能软交换解决方案,运营商们可以确保现有传统业务的总体透明度;同时获得一个通过全新业务实现收入增长的稳定平台。
有关情况
软交换国际论坛ISC(International Soft switch Consortium)专门从事软交换体系研究的公认的权威性国际组织。倡导将开放的结构和多厂商互操作性用于下一代的语音、图像和数据解决方案。分为Application、Architecture、Carriers、Device Control、Legal Intercept、Marketing、Session Management和SIP等8个工作组。截至2000年底,已有195个成员。国际上的主要设备制造商和运营商都参与进来。
ITU的工作
ITU-T为了满足电路网向分组网过渡的需要,在ISUP的基础上制订了用于软交换控制设备之间互通的BICC协议,同时完成了软交换控制设备和MG之间控制关系的H.248协议
IETF的工作
IETF在描述MGC和MG之间的控制关系的MGCP协议基础上制订Megaco协议。将SS7信令移植到IP网上,为此制订了SCTP和M3UA。制订了用于软交换控制设备和数据终端设备之间的控制协议SIP,以及软交换控制设备之间互通的SIP BCP-T协议。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市