递归关系

数学术语

设(a0,a1,...,ar,...)是一个序列,把该序列中的ar和它前面的几个ai(0≤i

定义
设p0,p1,…,pn,…是一个序列。如果pn和序列中在它前面的若干项联系起来的一个关系式对所有大于等于某个整数n0的整数n都是有效的,则称这个关系式为递归关系(recursive relation)式。
如:设(a0,a1,...,ar,...)是一个序列,把该序列中的ar和它前面的几个ai(0≤ir=3ar-1 (r≥1)和错排数:Dn=(n-1)(Dn-1+Dn-2) (n=3,4,...),都是递归关系。
有时也称递归关系式为差分方程。为了能从递归关系式计算出序列的每一项,必须知道序列开始的一个或几个数,称这样的数为初始条件(initial condition)或初始值。
在许多情况下,得到递归关系式本身就是朝解决一个计数问题迈了一大步。即使不能从这个递归关系式很快地解出它的一般表达式,这也是相当不错的了。这是因为采取逐步计算的方法可以得到序列各项的值。有些例子说明,没有递归关系,计算的可能性根本就不存在。
递归关系模型
递归关系有两个比较著名的模型是:斐波那契序列和河内塔。
斐波那契序列
首先比较详细地研究一个特殊的计数序列。这个序列是通过递归关系定义的。Pisa的Leonardo在1202年出版的名为“Liber Abacci(关于算盘)”一书中,提出了一个问题。该问题是如何确定一对兔子在一年里生产多少对兔子?Leonardo,因Fibonacci(Filius Bonacci的缩写)这个名字而更为人们所知道。
由Fibonacci提出的问题是,在一年的开始,将一对兔子放进围场中。每个月,一对兔子中的雌性兔子生下新的雌雄各异的一对兔子。每对新兔子从第二个月起也是每月生产一对兔子。求一年后,围场内兔子的总对数。
在第一个月内,所给定的一对兔子将生产一对新兔子,所以,在第一个月末,围场中,将有两对兔子。在第2个月内,唯有最初的一对兔子生产一对兔子,所以,在第2个月末,围场中,将有3对兔子。在第3个月内,最初的一对兔子以及在第一个月所生产一对兔子都将各自生产一对兔子,所以,在第3个月末,围场中,将有2+3=5对兔子。对每个n=1,2,3,…,令f(n)表示第n月初(等价地讲,第n-1月末)围场中的兔子对的总数。有f(1)=1,f(2)=2,f(3)=3,f(4)=5,而要计算的是f(13)。以下将f(n)的递归关系着手,可以容易地计算出f(13)。在围场中的第n-1月初的兔子对仍将在第n月初存在;另外,在第n-2月初的就已存在的所有兔子对在第n-1月内各生产一对新的兔子,于是在第n月初有f(n-1)+f(n一2)对兔子,所以对n=3,4,…有
利用这个关系和已经计算出的f(1),f(2),f(3),f(4)值,可以得到
于是,一年后,围城内有377对兔子。
如果令f(0)=1,于是f(2)=2=1+1=f(1)+f(0).数序列f(0),f(1),f(2),…满足递归关系:对于n=2,3,4,…有 连同初始值f(0)=1和f(1)=1被称为斐波那契序列,并且称序列中的数为斐波那契数。通过计算知道该序列是:
1,1,2,3,5,8,13,21,34,55,89,144,233,377,…
斐波那契序列有许多值得注意的性质。例如,斐波那契序列f(0),f(1),f(2),…项的部分求和具有
对于n=0,该公式简化为f(0)=f(2)一1,由于1=2-1,所以显然公式是成立的。
假设结论对任意的自然数k(>o),n=k--1时成立,则n=k时,
数学归纳法原理,得到证明。
需要做的事情是找出一个显式表示斐波那契数。考虑斐波那契的对于n=2,3,4,…递归关系,并略去f(0)和f(1)值。解决这个递归关系的一种方法是寻找形式为f(n)=qn的一个解。它的第一项是q0=1。发现:f(n)=qn满足斐波那契递归关系当且仅当qn=qn-1+qn-2,或对于n=2,3,4,…有qn-2(q2-q-1)=0。因为假设q≠0,所以得到f(n)=qn是斐波那契递归关系的一个解当且仅当q2-q-1=0,或等价地讲,当且仅当q是二次方程x2-x-1=0的一个根。该方程的根是
于是
是斐波那契递归函数的两个解。由于这个递归关系式线性的(没有f的不是1的方幂)齐次的(没有常数项),所以导出
对于任意的常数c1和c2,是递归函数的解。
因为斐波那契序列有初始值f(0)=f(1)=1,所以可以通过二元一次方程组来确定常数c1和c2。
n=0时,得:c1+c2=1
n=1时,得:
解得:
概括起来,有以下定理
1.斐波那契数满足公式
对n=0,1,2,...
对于不同的处置,c1和c2将得到不同的值,f(n)的形式也有所不同。
2.沿着杨辉三角或Pascal三角形的对角线,从左向上的二项式系数之和等于斐波那契数。更确切地说,对于n≥0,第n斐波那契数f(n)满足
其中 .
河内塔
递归关系的另外一个很重要的模型是河内(Hanoi)塔。如图1所示,1,2和3是三根直立的杆子.不妨设,开始时有n个圆盘依大小,自下而上套在杆1上,并且n个圆盘的半径两两不同。按照三条规则,将杆1上的圆盘以原样全部转移到杆2或杆3上。这三条规则是:(1)每次只转移一个圆盘;(2)整个转移过程始终保持较小的在较大的上面的形式;(3)有而且仅有三根立杆1,2和3供使用。
问:最少要移动多少次,才能将杆1上的n个圆盘以原样全部转移到杆2或杆3上?
稍加分析不难看出,按照上述三条转移规则,n个圆盘的转移只能按下面的过程进行:第一步将杆1最上面的n-1个圆盘,借助杆2或杆3转移到其中的一根上,不妨设转移到杆2上。第二步将杆1的最下面的大圆盘转移到杆3上.第三步借助杆1和杆3,再把杆2上的n-1个圆盘转移到那个套有最大圆盘的立杆3上,如图2所示。
假设hn表示转移n个圆盘所需要的最少移动次数,那么执行第一步需要hn-1次,执行第二步需要一次,执行第三步需要hn-1次,于是最少移动的总次数等于
并且初始条件h1=1。显然,hn的表达式也是一个递归关系式。
应用
在平面上有n条直线,假定没有两条直线是平行的,且没有三条直线是共点的,问这个平面被这n条直线分隔成多少个区域?
解:令an表示n条直线将平面分割成的区域数。显然a0=1,当n=1,2,3时,由图3可得,a1=2,a2=4,a3=7。
假定平面上已有n-1条直线把平面分割成an-1个区域,再在平面上插入第n条直线。它与原n-1条直线相交,得到n-1个不同的交点,这n-1个点把第n条直线分成n段,从而产生了n个新区域。例如在图3的(3)中平面省上三条直线将平面分割成7个区域,现加进第4条直线,与原三条直线相交,得3个交点,产生了4个新区域,如图4阴影部分。因此,我们推知有如下的递归关系:
而a0=1.
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市