重正化

物理学术语

重正化(Renormalization),又被称为重整化、重正规化,是量子场论、场的统计力学自相似几何结构中解决计算过程中出现无穷大的一系列方法。物理中,重正化是克服量子场论圈图中的发散困难,使理论计算得以顺利进行的一种理论处理方法。重正化方法运用的成功首先是在量子电动力学问题中实现的。

简介
量子电动力学将电磁场量子化,建立起来的方程能说明电磁波是由光子组成的,且能说明光子的产生和湮没,亦能说明电子的波粒二象性及其产生和湮没。为了得到更精确的理论结果,进行微扰展开高阶圈图近似计算时,由于包含自由动量的圈积分,结果不可避免地出现无穷大,使得理论计算无从与实验相对比,称为发散困难。
经过多年研究,认识到这些无穷大结果的物理效应表现在电子的质量和电荷上。电子的质量来源于电子固有的力学质量和电子自能贡献的电磁质量;电子的电荷来源于电子固有的电荷和由于真空极化作用所产生的附加电荷。电子自能贡献的电磁质量及真空极化作用产生的附加电荷均为无穷大。重正化方法就是用实验测得的电子质量和电子电荷代替电子的无穷大质量和无穷大电荷,高次近似计算中的无穷大便被吸收到电子质量项和电荷项之中,而成为有限的,从而可以与实验结果相比较。理论计算的电子反常磁矩兰姆移位与实验值符合得极好。量子电动力学成为一门非常精确的理论。
在量子场论发展的早期,人们发现许多圈图(即微扰展开的高阶项)的计算结果含有发散(即无穷大)项。重正规化是解决这个困难的一个方案。一个理论如果只有有限种发散项,则可以在拉氏量中引进有限数目的项来抵消这些无穷大项,这种情形被称为可重整。反之,如果理论中有无限种发散项,则称为不可重整。
可重正规化曾被认为一个场论所必需满足的自洽性要求。它在量子电动力学和量子规范场论的发展过程中起过重要的作用。粒子物理的标准模型也是可重整的。
现代场论的观点认为所有理论都只是有效理论,它们都有它们的适用范围。除了所谓的终极理论,所有理论在原则上都是不可重整的。在这种观点下,重正规化只是联系不同能标下理论的一种方法。
例如: 的后两项发散。
为了消除发散,把积分下限分别改为无穷小的 和 ,这样积分就变成了 如果能保证 那么就可以得到
求解
从另一种观点看,可以在三维动量空间中表示狄拉克方程的解,其中与时间有关的项可以表示为:
其中n是微扰展开式的阶次,由于散射矩阵表示的是始态( ) 和终态( )之间的关系,两态间的时间差是 ,所以就会有:
这样就说明了QED中的无穷大是始态和终态之间无穷大的时间差造成的,如果能计算微扰展开式的所有阶次,那么无穷大和无穷大就会彼此相互抵消。例如函数
当x→∞时等式右边的每一项(第一项1除外)都会趋向于无穷大,但所有项叠加的结果exp(-x^2)却会趋向于零,这是因为无穷大与无穷大之间会彼此相互抵消。 微扰展开式的零阶项中,时间项为exp(-ita); 一阶项中,时间项为exp(-ita)-1; 二阶项中,时间项为exp(-ita)-1-(-ita);显然,从二阶展开式开始,计算结果开始随时间而发散,这也说明了为什么无穷大不会出现在0阶和1阶展开式中,从二阶展开式才开始出现无穷大。
发展过程
1965年,朝永振一郎(Sin-Itiro Tomonaga)因在量子电动力学基础理论研究方面的成就,与施温格(Julian Schwinger)、费因曼(Richard Feynman)共同获得诺贝尔物理学奖。朝永振一郎最大的研究成果为重整化理论与中子研究、并且因为重整化理论而获得诺贝尔物理学奖。
在70年代以前,人们知道的可以重正化的定域量子场论除量子电动力学外,还有赝标介子与核子相互作用理论,标量介子与核子相互作用理论,零自旋玻色子的电动力学,中性矢量玻色子(有时称重光子)与守恒的媡/2自旋费密子流耦合的理论,无静止质量的杨-密耳斯场(见规范场)的理论。但那时还不知道如何对有静止质量的杨-密耳斯场理论以及带电荷的规范场粒子的电磁相互作用理论进行重正化。
70年代初,G.霍夫特(1971)、M.维尔特曼与霍夫特合作(1972)、B.W.李·J.津恩·朱斯坦(1972 Lee-Zinn-Justin)的一系列工作,说明了杨·米尔斯场如果在黑格斯机制下获得静止质量,则整个理论(理论中还可包括与黑格斯场耦合而获得静止质量的费密场)是可以重正化的。其中杨·米尔斯场还可以推广到更一般的规范场。
由于这一发现,S.L.格拉肖、S.温伯格和A.萨拉姆在规范场理论前提下提出的电弱统一理论终于成为一个可以重正化的关于弱相互作用和电磁相互作用的统一理论。这个理论所预言的传递弱相互作用的粒子 W+、W-和Z0,都已于1983年被找到。
在这些成功的推动下,人们又认识到强相互作用可能也是一种由规范场传递的相互作用,因而提出了量子色动力学(QCD)理论,这个理论在相当大的程度上与高能物理实验结果相符,而且也是可以重正化的。这在强相互作用的研究中是一个创举。
人们也尝试着在量子规范理论的前提下把弱相互作用、电磁相互作用和强相互作用统一起来(见大统一理论),但其中还有不少问题有待澄清。
正规化
量子化的定域的引力理论的消除发散和重正化,是一个还没有解决的问题。
实现重正化需进行正规化和剪除交缠无穷大。
正规化是用包含可调节参量的不发散积分取代发散积分,当可调节参量趋于某个极限时,这个不发散积分就还原为原来的发散积分。不发散积分又分为两部分,当可调节参量趋于上述极限时,一部分仍保持不发散,另一部分趋于发散,从而把S 矩阵元中的发散部分和不发散部分分离开来。
在正规化时要求:①选定一个以至一类确定的分离方式,把有限部分分离出来;②保持物理体系的对称性;③原先不发散的积分在正规化后不改变。常用的正规化方法有:取质量M为可调节参量的费因曼法(1948);取若干个质量Mi为可调节参量的泡利-维拉斯法(1949);取空间、时间的维数n为可调节参量的维数正规化霍夫特-维尔特曼法(1972)。其中维数正规化法能满足保持规范不变性的要求(有rs反常时除外),可称为最佳方法。
举例
只有正规化方法,而没有合乎逻辑的处理交缠无穷大的方法,仍不能实现重正化。以量子电动力学为例,从费因曼图可以看出,有些图只有一个圈,如图1。与图对应的费因曼积分虽然都是发散的,但发散项的分离还比较简单;虽然有些图有共线的相邻的圈,如图2。与各个相邻圈对应的费因曼积分都是发散的。这种图形的发散称为交缠发散或交缠无穷大。分离交缠无穷大的过程比较复杂,方法不止一种,层次分明、数学上较严格的方法是BPHZ法。其要点是首先对单圈子图(费因曼图中的一部分)的发散作减除,然后对双圈子图的发散作减除,依此递推。这样的减除等价于在拉格朗日量中依次引入能够抵消一圈发散、双圈发散、……、n 圈发散的各抵消项。
量子规范理论(包括电弱统一理论、量子色动力学和大统一理论)的情况虽然比量子电动力学复杂,但它们的重正化问题都已解决。
在出现rs反常时,只要轻子的种类数和夸克的种类数相同,rs反常就自动相互抵消。
研究范围
重正化是一个涉及面较广的研究课题。粒子物理、统计物理等,都可遇到重正化问题。有一些很有意义的问题,如有束缚态时的重正化,弯曲时空量子场论的重正化等,都有待人们去深入探索。
现代的重正化理论并不只是被动地应付发散困难,它还能通过重正化群方法主动地给出物理上的新的预言。例如关于渐近自由预言。
重正化方法也有它的局限性,它不能解决微扰近似方法本身所固有的问题,如微扰级数收敛问题以及强耦合不能用微扰方法的问题等。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市