集合运算

数学科学用语

集合运算是数学科学中常用的词语,是一种非常有效的构造形体的方法,可以直观的减少运算难度。

概念
集合运算是实体造型系统中非常重要的模块,也是一种非常有效的构造形体的方法。从一维几何元素到三维几何元素,人们针对不同的情况和应用要求,提出了不少集合运算算法。
在早期的造型系统中,处理的对象是正则形体,因此定义了正则形体集合运算,来保证正则形体在集合运算下是封闭的。在非正则形体造型中,参与集合运算的形体可以是体、面、边、点,运算的结果也是这些形体,这就要求集合运算算法中能统一处理这些不同维数的形体,因此需要引入非正则形体运算。
1、正则集与正则集合运算算子
Tilove根据点集拓扑学的原理,给出了正则集的定义。认为正则的几何形体是由其内部点的闭包构成,即由内部点和边界两部分组成。对于几何造型中的形体,规定正则形体是三维欧氏空间中的正则集合,因此可以将正则几何形体描述如下:
主要类型
设G是三维欧氏空间R3中的一个有界区域,且G=bG∪iG,其中bG是G的n-1维边界,iG是G的内部。G的补空间cG称为G的外部,此时正则形体G需满足:
1)bG将iG和cG分为两个互不连通的子空间;
2)bG中的任意一点可以使iG和bG连通;
3)bG中任一点存在切平面,其法矢指向cG子空间
4)bG是二维流形。
对于正则形体集合,可以定义正则集合算子。设是集合运算算子(交、并或差),如果R3中任意两个正则形体A、B作集合运算:
R=AB
运算结果R仍是R3中的正则形体,则称为正则集合算子,正则并、正则交、正则差分别记为∪*,∩*、-*。
分类
几何造型中的集合运算实质上是对集合中的成员进行分类的问题,Tilove给出了集合成员分类问题的定义及判定方法。
Tilove对分类问题的定义为:设S为待分类元素组成的集合,G为一正则集合,则S相对于G的成员分类函数为:
C(S,G)={S in G,S out G,S on G}, (3-2-1)
其中,
S in G=S∩iG,
S out G=S∩cG,
S on G=S∩bG,
如果S是形体的表面,G是一正则形体,则定义S相对于G的分类函数时,需考虑S的法向量。记-S为S的反向面。形体表面S上一点P相对于外侧的法向量为NP(S),相反方向的法向量为- NP(S),则(3-2-1)式中S on G可分为两种情况:
S on G ={S shared(bG),S shared(-bG)},
其中,
S shared(bG)={P|P∈S,P∈bG,NP(S)=NP(bG)},
S shared(-bG)={P|P∈S,P∈bG,NP(S)=-NP(bG)}。
于是,S相对于G的分类函数C(S,G)可写为:
C(S,G)={S in G,S out G,S shared(bG),S shared(-bG)}。
由此,正则集合运算定义的形体边界可表达为:
b(A∪B)={bA out B,bB out A,bA shared(bB)},
b(A∩B)={bA in B,bB in A,bA shared(bB)},
b(A-B)={bA out B,-(bB in A),bA shared(-bB)}。
3.集合运算算法
正则集合运算与非正则形体运算的区别在于增加了正则化处理步骤。下面,我们给出一个非正则形体的集合运算算法。
假定参与集合运算的形体为A和B,运算的结果形体C=AB,其中集合运算符为通常的集合运算并、交、差(È 、Ç 、- )。
对于一个非正则形体L,可以将其分解为L=L3ÈL2ÈL1ÈL0,其中L3为R3中的正则闭集之并,存在面表、边表、点表等拓扑元素。L2是悬面集,存在边表和点表。L1是悬边集,只有端点。L0是孤立点集。
集合运算整个算法包括了以下几部分:
(1)求交:参与运算的一个形体的各拓扑元素求交,求交的顺序采用低维元素向高维元素进行。用求交结果产生的新元素(维数低于参与求交的元素)对求交元素进行划分,形成一些子元素。这种经过求交步骤之后,每一形体产生的子拓扑元素的整体相对于另一形体有外部、内部、边界上的分类关系。
2)成环:由求交得到的交线将原形体的面进行分割,形成一些新的面环。再加上原形体的悬边、悬点经求交后得到的各子拓扑元素,形成一拓扑元素生成集。
(3)分类:对形成的拓扑元素生成集中的每一拓扑元素,取其上的一个代表点,根据点/体分类的原则,决定该点相对于另一形体的位置关系,同时考虑该点代表的拓扑元素的类型(即其维数),来决定该拓扑元素相对于另一形体的分类关系。
(4)取舍:根据拓扑元素的类型及其相对另一形体的分类关系,按照集合运算的运算符要求,要决定拓扑元素是保留还是舍去;保留的拓扑元素形成一个保留集。
(5)合并:对保留集中同类型可合并的拓扑元素进行合并,包括面环的合并和边的合并。
(6)拼接:以拓扑元素的共享边界作为其连接标志,按照从高维到低维的顺序,收集分类后保留的拓扑元素,形成结果形体的边界表示数据结构。
集合的运算
主条目:并集
并集是将A和B的元素放到一起构成的新集合。
定义
给定集合A,B,定义运算∪如下:A∪B = {e|e∈A 或 e∈B}。A∪B称为A和B的并集。
A 和 B 的并集
示例
基本性质
作为集合间的二元运算,∪运算具有以下性质。
交换律:A∪B = B∪A;
结合律:(A∪B)∪C = A∪(B∪C);
幂等律:A∪A = A;
幺元:∀集合A,A∪ = A;(是∪运算的幺元)。
主条目:交集
A和B的交集,写作A∩B,是既属于A的、又属于B的所有元素组成的集合。
若A∩BA和B称作不相交。
A 和 B 的交集
定义
给定集合A,B,定义运算∩如下:A∩B = {e|e∈A 且 e∈B}。A∩B称为A和B的交集。
基本性质
作为集合间的二元运算,∩运算具有以下性质。
空集合:∀集合A,A∩ = ;(是∩运算的空集合)。
其它性质还有:
示例
{1, 2}∩{红色, 白色} =
{1, 2, 绿色}∩{红色, 白色, 绿色} = {绿色}
{1, 2}∩{1, 2} = {1, 2}
主条目:差集
A在B中的相对补集,写作B−A,是属于B的、但不属于A的所有元素组成的集合。
在特定情况下,所讨论的所有集合是一个给定的全集U的子集。这样,U−A称作A的绝对补集,或简称补集(余集),写作A′或CUA。
补集可以看作两个集合相减,有时也称作差集。
定义
给定集合A,B,定义运算-如下:A - B = {e|e∈A 且 。A - B称为B对于A的差集,相对补集或相对余集。
在上下文确定了全集U时,对于U的某个子集A,一般称U - A为A(对于U)的补集或余集,通常记为A'或,也有记为CUA的。
基本性质
作为集合间的二元运算,- 运算有如下基本性质:
A - A = ;
幺元:∀集合A,A - = A;(是 - 运算的右幺元)。
零元:∀集合A,- A =;(是 - 运算的左零元)。
示例
{1, 2}−{红色, 白色} = {1, 2}
{1, 2, 绿色}−{红色, 白色, 绿色} = {1, 2}
{1, 2}−{1, 2} =
若U是整数集,则奇数的补集是偶数
对称差
主条目:对称差
定义
给定集合A,B,定义对称差运算△如下:A△B = (A-B)∪(B-A)。
基本性质
作为集合间的二元运算,△运算具有如下基本性质:
交换律:A△B = B△A;
结合律:(A△B)△C = A△(B△C);
幺元:∀集合A,A△ = A;(是△运算的幺元)。
逆元:A△A =;
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市