非线性运算

计算机术语

算法中经常包含着各种非线性运算,如对数运算、开方运算、指数运算、三角函数运算等。比如神经网络算法就存在着大量的指数和对数运算。“对数和指数甚至无处不在”。

简介
随着科技的进步和技术的不断发展,算法的计算量和复杂程度也在成倍增加。算法中经常包含着各种非线性运算,如对数运算、开方运算、指数运算、三角函数运算等。比如神经网络算法就存在着大量的指数和对数运算。“对数和指数甚至无处不在”。
非线性函数的运算实现方式主要有CORDIC算法和泰勒级数逼近2种。
泰勒级数逼近讨论的是一种局部的多项式逼近,是在一定的误差用一个n阶多项式近似代替邻域范围内的非线性函数,其涉及到多次乘法和除法运算。乘、除法运算的次数与泰勒级数展开的阶数n有关,n越大,所需乘法和除法次数越多。由于浮点乘法运算复杂,且不同的函数的泰勒级数展开式不同,因此用泰勒级数实现非线性函数会降低 浮点运算的速度。而CORDIC算法将非线性函数的计算分解为一系列的加减法操作和移位操作,非常适合硬件实现。
非线性数学
定义
非线性数学,是数学科学的一个新的门类和学科体系。其是与传统的线性数学体系相对应的、相对称的数学领域。迄今为止的大部分数学学科,属于线性数学领域。非线性数学的基础,是传统的线性数学。同时,非线性数学也有着与线性数学本质上不同的独特理论和方法。一般认为,孤立波和湍流、混沌和分形等领域的数学,属于非线性数学领域。非线性数学,必将成为未来数学的主流。
解释
非线性数学,是用非线性数学理论和方法来研究非线性现象、解决非线性问题的数学理论体系,是研究非线性科学一般规律的基础理论和数学工具。非线性数学,有一系列独有的概念、定义、定理和方法。非线性数学的研究对象,源自实践和理论两个方面,源自非线性现象、非线性问题和非线性科学。其有着复杂的数学关系、数学结构和数学性质。很多研究对象,呈现出良好的自相似性、对称性和周期性。
非线性数学的基本方法,是基于研究对象的整体,从宏观上认识规律、把握规律,具有综合性、复杂性特征。其不同于传统的线性数学,局限于还原论的微观分析,尽管需要借用离散化线性化的处理方式和数学方法。
组成
非线性数学,至少应包含以下各方面内容:
——非线性算术,即非线性数论,其基础是经典同余概念下的复合同余性的研究,核心是满足整性要求的条件迭代下的离散动力系统的研究内容,走的是非传统数系逐步扩展的、保持整性的创新道路。这在原始和广义克拉茨问题研究中,已经取得突破性成果。
——非线性代数,即非线性抽象代数,其核心是在元素分类、集合分解基础上的非线性群、非线性环、非线性域等方面的研究。某些典型的非线性代数结构,均有很好的对称性和数学性质。
——非线性几何,自然应包括曼德勃罗的以分数维研究为重点的分形几何学
——非线性方程,从非线性观点开展各类常微分方程和偏微分方程的研究,在寻求公式解和近似解之间打开新的通路。其中,各类不动点(系)和极限环是方程解的稳定性研究的重点。
——非线性分析,即非线性数学分析,以非线性收敛性(包括非线性一致收敛、非线性绝对收敛)等概念为基础,研究实数全域中的定义域(初值)分类和值域作为“收敛集合”的“动阻耦合”映射下的极限性质,将经典数学分析研究的微观的点收敛、中观的区间收敛,拓展到整体的全域(包括低维和高维空间)的收敛集合(其中包含各种形式收敛的子集合);也应包含混沌学、波莱尔的测度论和鲁滨逊的非标准分析等内容。需要指出的是,发展二维的非线性复分析,可能是通向黎曼猜想解决的途径之一。
——非线性拓扑,重点研究满足正则非线性条件的非线性同构、同胚和非整数(分数)亏格等方面的问题。
——非线性概率,包括非线性数学期望等方面的研究。
——非线性逻辑,即非线性数理逻辑,引入自相似结构模式归纳的非线性公理,构建非线性数学归纳法的公理基础。
线性运算
线性运算是加法和数量乘法, 在实数领域像只包含加法和数量乘法二元一次方程就属于线性运算,如y=3x+5。如果是矩阵的加法和数乘运算,就称为矩阵的线性运算;如果是向量的加法和数乘运算,统称为向量的线性运算。对于不同线性运算一般有不同的形式,它们满足交换律、结合律、分配律等。
矩阵的加法和数乘运算,统称为矩阵的线性运算。矩阵的加法就是矩阵对应元素相加,当然,相加的矩阵必须要有相同的行数和列数,即只有同型矩阵方可相加。由于矩阵加法归结为它们元素的加法,即数的加法,故不难验证矩阵加法满足:结合律、交换律。
向量的加法和数乘运算,统称为向量的线性运算。包括加法交换律、加法结合律、数乘分配律、数乘结合律等。
非线性规划
线性规划是具有非线性目标函数或者约束条件的一种数学规划,他是运筹学的一个重要的分支。非线性规划问题是研究一个多元函数在一组或者多组不等式的约束条件下的最大值或最小值问题,而且约束条件函数和目标函数中至少有一个是未知量的非线性函数。如果目标函数和约束条件函数两个都是线性函数,那么这种情况就属于线性规划。
如果目标函数和约束条件函数两者中,如果有一方其中含有非线性的数学表达式,那么这种最优化问题就叫做非线性规划问题,当目标函数是二次方程,而约束条件函数是线性方程的时候,就成为二次规划问题,对于二次规划问题,现今的理论和解决方法都是比较成熟的。如果目标函数中,数学表达式中含有一些函数的平方和的形式的情况,则有一些专门解决平方和最优化问题的最优化方法。当目标函数中,含有多项式的时候,这种最优化问题就叫做几何规划问题。几何规划问题就是一种特殊的非线性规划问题。
非线性规划算法是 20 世纪50 年代开始形成并发展起来的一门非常新兴并且前端的学科。1951 年H·W·库恩和A·W·塔克发表了一篇关于最优性条件(后来被称为库恩·塔克条件)的论文就是非线性规划算法正式诞生并且开始发展起来的一个重要的标志。50 年代还产生了二次规划与可分离规划的很多种解法,这些解法大部分都是以 G·B·丹齐克所提出的一种基于解决线性规划问题的单纯形法为理论基础的。而到了 50 年代末至60 年代末的时候,出现了很多解决非线性规划问题的非常有效的算法,到了 70 年代,又有了进一步的发展。
非线性运算的应用
非线性规划算法在很多领域有着重要的用途,包括:经营管理、工程设计、军事指挥、科学研究等方面,这些领域研究中往往都会存在着最优化的问题。例如:如何在现有的人力、物力和财力的条件下去合理的安排产品的生产,以取得最大化的利润;如何设计某一种产品,在满足规格和性能要求的条件下,达到最小化的成本;如何确定某一个自动控制系统的某些重要参数,使得该系统的工作状态保持最佳;如何分配某一个动力系统中的各个电站的负荷,在保证系统要求的指标前提下,使总耗费最小化;如何安排库存的储量,既可以保证供应,也可以使储存的费用最少;如何组织货源,既可以满足顾客的需求,也可以使资金周转的最快等等。对于一些目标函数和约束条件中出现未知数的非线性函数,而且不便于把他们线性化,或者勉强线性化以后可能导致较大误差,这个时候就可以用非线性规划的算法去处理这类问题。而解非线性规划的算法很多,比较著名的有罚函数法、BFGS 法等等。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市