伪素数

伪质数

伪素数,又叫做伪质数:它满足费马小定理,但其本身却不是素数。最小的伪素数是341。有人已经证明了伪素数的个数是无穷的。事实上,费马小定理给出的是关于素数判定的必要非充分条件。若n能整除2^(n-1)-1,并n是非偶数合数,那么n就是伪素数。第一个伪素数341 是萨鲁斯(Sarrus)在1819年发现的。

基本信息
年表
1903年,马洛(Malo)证明:若n为伪素数,则 也是一个伪素数,从而肯定了伪素数的个数是无穷的。
1950年,发现第一个偶伪素数161038=2*73*1103。
1951年,皮格(Beeger)证明了存在无限多个偶伪素数。
例子
。 。但很多都是素数,如3,5,7,29,31……
1819年数学家萨鲁斯找到了反例: ,而341=11*31是合数,341就成了第一个伪素数。以后又发现了许多伪素数:561 645 1105 1387 1729……
其他信息
起源
能整除 的合数n,a≥2,(a,n)=1,被称为以a为底的伪素数,简记为a-伪素数。
伪素数起源于17世纪法国数学家费马的某些研究。他于17世纪30年代末曾写信给法国数学家梅森,提到这样一个命题: 能被素数p整除。后来,在他1640年10月18日给德贝西的信中说,他进一步证明了这样一个定理:
如果p是一个素数,且a不能被p整除,则 能被P整除(等价的说法是 能被素数p整除)。
后人称这个定理为费马小定理,以和费马大定理相区别。费马小定理奠定了现代数论中素数判定的基础。
按费马小定理,如果一个奇数n不能整除 ,则n必为合数(这是费马小定理的一个逆否命题)。但是,如果奇数n>1能整除 , n就一定是素数吗?就是说,费马小定理的逆命题是否成立?对于1费马小定理的逆命题当然成立。德国数学家莱布尼茨曾在1680年6月和1681年12月两次宣布他证明了这样一个命题:如果n不是素数,则 不能被n整除(这是下述命题的逆否命题:如果 能被n整除,则n是素数),但没发表他的证明。1742年4月,德国数学家哥德巴赫在给欧拉的信中表示要证明费马小定理的逆定理,但似乎也无结果。
1819年,法国数学家沙路斯发现,虽然341整除 ,但341是合数,341=11×31。这一反例表明费马小定理的逆定理不成立。1830年,一位匿名德国数学家指出更一般的构造反例的方法,他指出,只要能找到两个奇素数p和q,使它们的积pq能同时整除 与 ,那么就可得到pq整除 。按此方法,人们发现除341外,还有561,645,1105,1389,1729,1905等也具有上述性质。于是,人们把能整除 的合数n称为伪素数。1926年,普列特制成5000万以内的伪素数表,1938年他又推进上限到1亿,为此,有时伪素数亦被称为普列特数。
提出伪素数后自然就产生了类似素数的问题,并得到人们的研究。如伪素数有多少个?人们指出,伪素数有无穷多,1903年麦洛用一个构造性方法对此加以证明。他证明了,若n是奇伪素数,那么, 也是奇伪素数,我们已知有奇伪素数 =341,按此法就可以构造出无穷多的奇伪素数来。再如是否存在偶伪素数?1950年,美国数学家D.H.莱默尔找到了第一个偶伪素数161038,161038=2×73×1103,73 |(2161038-2),1103 |(216038-2) 。1951年,荷兰的毕格尔又找到了一个偶伪素数,并证明了存在无穷多个偶伪素数。
后来人们针对费马小定理的一般情况,把伪素数概念一般化,就得出前面的定义。1904年,意大利数学家奇波拉给出一种构造a-伪素数的方法:
对于已知的整数a≥2,取p是任一奇素数,使p不能整除 ,则 是a-伪素数。
他同时也证明了存在无穷多的一般伪素数。当然,在一般伪素数研究中,也有许多未解决的问题。例如,1952年杜帕克提出的,能否存在无穷多个伪素数,它们同时以2和3为底,或更一般些,能否存在无穷多个伪素数,它们同时以两个不同的整数a与b为底(a≥2,b≥2,且a与b不是同一个整数的幂)。
伪素数的一个用途是利用伪素数表来判定一个奇数n是否为素数,这是D.H.莱默尔提出来的:如果n不能整除 ,则据费马小定理知,n必为合数;如果n能整除 ,且n在伪素数表中,则n为合数,否则为素数。这种方法的关键就在于按伪素数表去掉伪素数,而这要求伪素数在能整除 的数中相当少才行,这就是当n整除 时,n是合数的比例问题。在前10亿个自然数中,共有50847534个素数,而只有以2为底的伪素数5597个,即在此范围内n整除 产生合数的可能性只有0.011%。所以人们把整除 的正整数n(>1)称为殆素数。在10亿之内,n整除 同时整除 的合数n只有1272个,即此时产生合数的可能性只有0.0025%。
如果存在合数n,对任何a>1,只要(a,n)=1时,n能整除 ,则n被称为卡迈克尔数。这种数是由美国数学家R.D.卡迈克尔于1912年提出来的。最小的卡迈克尔数为561,这种数在自然数中更少了,在10亿之内,只有646个。一个问题就是:卡迈克尔数是否有无穷多?
伪素数谜
是p的倍数,进一步如果p与a互素,则显然 是p的倍数,用同余式来表达就是:
这个表达式无疑是数论大厦的一块基石。对如此美妙的定理如果毫不动心,那他一定是只剩下一口气的行尸走肉。推导这个公式用同余式最方便,由于与素数p互素的数有p-1个,它们是:
1,2,3,...p-1
显然有: a*2a*3a...a(p-1)=1*2*3...(p-1)( mod p)
即: [ ]*(p-1)!=(p-1)! (mod p)
因为从1到p-1之间的所有整数都于p互质,所以可以两边同除以(p-1)!得到:
再对a应用数学归纳法即可证明之。
但是它的逆定理是不成立的,即当 能被p整除时,p不一定是素数,在1819年,法国数学家莎路斯首先发现,虽然341能够整除2340-1,但是341=11*31为一个合数。后来有一位德国数学家一般性地证明了,只要找到两个奇素数p,q,使得它们的积能同时整除 与 ,那么就可得到pq整除 。
伪素数有无穷多个,第一个证明这一点的是数学家迈罗在1903年给出的。如果n是伪素数,则2n-1也是伪素数,所以伪素数有无穷多个。除了上述的341之外,人们陆续发现了561,645,1105,1387,1729,1905等等。数学家普列特在1938年做出了1亿以内的伪素数表。因此伪素数又叫做普列特数。
除了奇伪素数以外,竟然还有偶伪素数存在,美国著名数学家D.H.莱默在1950年找到了第一个偶伪素数:161038,后来荷兰数学家毕格尔又发现了3个偶伪素数:215326,2568226和143742226,并且从理论上证明了存在无穷多个偶伪素数。
伪素数是针对底数为2的情形提出的.而对于一般的底数a,则提出了a-伪素数的概念。例如91能整除390-1,所以把91称为3-伪素数。1904年,意大利数学家奇波拉给出了一种构造a-伪素数的方法:
对于已知的整数 a>=2,取任意奇素数 p,使得 p不能整除 ,则 必是a-伪素数。比如取 a=2,选 p=5,显然 5不能整除 ,所以 是伪素数。
对于已知的整数 a>=2,由于有无穷多个奇素数不能整除a(a^2-1),所以a-伪素数有无穷多个。
利用伪素数表,数学家D.H.莱默建议按照如下程序来判别一个奇数是否是素数:如果p不能整除 ,则p必然为合数;如果p能整除 ,且p在伪素数表中,则p为合数,否则p为素数。显然这是基于费马小定理的检验法,我想如果再结合筛法,就会完全剔除这些伪素数。
毕竟伪素数比较稀少,在前10亿个自然数中共有50847534个素数,而伪素数只有5597个,即大约只占万分之一。而同时能以2,3为底的伪素数只有1272个,即大约5万分之一。那么是否存在这样的数p,它能够整除所有的以2,3,4,...为底的费马表达式,那么p一定是素数了吧?遗憾的是,竟然存在这样的伪素数,它能够整除以任何整数a为底(即使是负整数)的 ,561就是最小的一个例子:
由于561=3*11*17,而由费马小定理,3,11,17都能够整除上式,所以561也能够整除上式。这种极端的伪素数叫做绝对伪素数,又由于是首先由美国数学家卡迈克尔在1912年发现的,所以又叫做卡迈克尔数,为了判别什么样的整数是卡迈克尔数,他发现了一个准则:
如果整数n满足如下条件
(1) n没有平方因子,即n没有相同的素因子;
(2) n是奇数且至少有3个不同的素数因子;
(3) 对于n的每一个素数因子p,p-1能够整除n-1;
则 n 必为卡迈克尔数。反之,如果 n是卡迈克尔数,则 n必满足上述3个条件。
1939年,数学家切尼克给出了一种构造卡迈克尔数的方法:
设m为自然数,且使得(6m+1),(12m+1),(18m+1)都是素数,则 (m)=(6m+1)(12m+1)(18m+1)是具有3个素因子的卡迈克尔数。例如取m=1,则有 (1)=7*13*19=1729是卡迈克尔数。类似地,自然数m是使得 (m)=(6m+1)(12m+1)(9*2m+1)...(9*2k-2m+1) (k>=4)中k个因子都是素数,则 (m)是含有k个素因子的卡迈克尔数。1985年,杜伯纳得到了下面一些巨大的卡迈克尔数: m=5*7*11*13*...*397*882603*10185 时的含有3个素因子的卡迈克尔数 (m)是一个1057位数,这是知道的最大的卡迈克尔数。其他的还有:
m=323323*655899*1040/6 时的 (m)是个207位数的卡迈克尔数。
m=323323*426135*1016/6 时的 (m)是个139位数的卡迈克尔数。
m=323323*239556*107/6 时的 (m)是个112位数的卡迈克尔数。
m=323323*160*8033 时的 (m)是个93位数的卡迈克尔数。
1978年,约里纳戈发现了8个卡迈克尔数,它们都具有13个素数因子。这是所知道的含有素数因子最多的一组卡迈克尔数。下表是所知道的小于x的以2为底的伪素数个数P(x)与卡迈克尔数的个数C(x)的分布情况。
x P(x) C(x)
不超过100000的16个卡迈克尔数如下:
561,1105,1729,2465,2821,6601,8911,10585,15841,29341,41041,46657,52633,62745,63973,75361
留给人们的未解之谜是;
(1) 同时以a,b为底的伪素数是否有无穷多个?
(2) 卡迈克尔数是否有无穷多个?
爱多士猜想有无限个卡迈克尔数,1994年 William Alford 、 Andrew Granville 及 Carl Pomerance 证明了这个命题。
强伪素数
令 是三因子的Carmicheal数,定义C3,1-及C3,2-数,它们分别指 =5 mod 8,i=1,2,3及 ≡5 mod 8,i=1,2, ≡9 mod 16时的情况,它们有着较高的成为强伪素数的概率。本文首先给出成为这些数的充分必要条件然后给出算法,最后经过上机计算得到1024以内的有58个对于前5个素数基的C3,1-强伪素数,其中有一个是对于前8个素数基的强伪素数;以及27个对前4个素数基的C3,2-强伪素数,只有一个是对于前4个基的强伪素数。
素数与伪素数通项公式
为 集合内元素,所有以 为因子的伪素数的n的取值公式为
伪素数变量的充分与必要条件
1.n为奇数时:n(x,y)=3xy+x+2y,或者n(x,y)=3xy+2x+y,计算时必须满足n(x,y)为奇数。
2.n为偶数时:n(x,y)=3xy+x+y,或者n(x,y)=3xy+2x+2y+1,计算时必须满足n(x,y)为偶数。
满足以上条件的n,其对应的数必为伪素数。
素数变量的充分与必要条件
1.n为奇数时:n(x,y)≠3xy+x+2y,或者n(x,y)≠3xy+2x+y,计算时必须满足n(x,y)为奇数。
2.n为偶数时:n(x,y)≠3xy+x+y,或者n(x,y)≠3xy+2x+2y+1,计算时必须满足n(x,y)为偶数。
满足以上条件的n,其对应的数必为素数。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市