位错理论

材料科学理论

位错又可称为差排,在材料科学中,指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。位错理论认为,晶体实际滑移过程并不是滑移面两边的所有原子都同时做整体刚性滑动,而是通过在晶体存在的称为位错的线缺陷来进行,位错在较低应力作用下就开始移动,使滑移区逐渐扩大,直至整个滑移面上的原子都先后发生相对位移。

位错理论的提出
1907年,沃尔特拉(Volterra)解决了一类弹性体中的内应力不连续的弹性问题,把它称为位错。
1926年,弗兰克尔发现理论晶体模型刚性切变强度与与实测临界切应力的巨大差异。理论计算值为G/30;而实际屈服强度比理论值低3~4个数量级。
1934年,波朗依(Michael Polanyi, 1891-1976)、泰勒(Geoffrey Taylor,1886-1975)、奥罗万(Egon Orowan, 1902-1989)几乎在同时获得了相同的结果,这一年发表的论文提出位错的模型。特别是泰勒明确地把沃尔特拉位错引入晶体。
位错理论认为,晶体实际滑移过程并不是滑移面两边的所有原子都同时做整体刚性滑动,而是通过在晶体存在的称为位错的线缺陷来进行,位错在较低应力作用下就开始移动,使滑移区逐渐扩大,直至整个滑移面上的原子都先后发生相对位移。
Taylor确定应变储存能储存于晶体缺陷处,以弹性畸变能的形式存在。 Orowan对他所观察到Zn晶体受到应力变形时,这种变形是不连续的,而是以不连续跳跃的方式进行。推定每一次形变“跳跃”必定来源于晶体缺陷的运动。 Polanyi的论文完成比Orowan 早几个月,但那时已与Orowan定期接触,了解他的想法,自愿等待一段时间,以便同时提交论文,并约定在同一期德文《物理杂志(Zeitschrift Fuer Physik)》并排发表。Polanyi后来放弃了晶体塑性研究,成为哲学家;Taylor在单晶和多晶力学分析方面以及加工硬化方面做了大量工作。 Orowan坚持位错研究,在位错运动与其它位错的交互作用以及晶体内部粒子对运动位错阻碍的理论分析方面,提出了许多有重大影响的新思想。
1939年,柏格斯(J.M. Burgers)提出用伯氏矢量表征位错,同时引入了螺位错。 1940年,皮尔斯(Peierls)提出后来1947年由纳巴罗(Nabarro)修正的位错点阵模型,这个模型突破了一般弹性力学范围,提出了位错宽度的概念,估算了位错开动的应力。
1947年,柯垂耳(Cottrel )提出溶质原子与位错的交互作用。并以解释低碳钢的屈服现象,第一次成功地利用位错理论解决机械性能的问题。
1947年,肖克莱(Shockley)描绘了面心立方形成扩展位错的过程。 1950年,弗兰克(Frank)和瑞德(Read)同时提出位错增殖机制
位错理论的相关概念
定义
从几何角度看,位错属于一种线缺陷,可视为晶体中已滑移部分与未滑移部分的分界线,其存在对材料的物理性能,尤其是力学性能,具有极大的影响。“位错”这一概念最早由意大利数学家和物理学家维托·伏尔特拉(Vito Volterra)于1905年提出。
理想位错主要有两种形式:刃位错(edge dislocations)和 螺位错(screw dislocations)。混合位错(mixed dislocations)兼有前面两者的特征。
这一理论可以解释实际晶体中位错的行为:可以在晶体中移动位置,但自身的种类和特征在移动中保持不变;方向(伯格斯矢量)相反的两个位错移动到同一点,则会双双消失,或称“湮灭”,若没有与其他位错发生作用或移到晶体表面,那么任何单个位错都不会自行“消失”(即伯格斯矢量始终保持守恒)。
刃位错
①简单立方(simple cubic)晶体原子排列,晶面刃位错和螺位错是主要的两种位错类型。然而实际晶体中存在的位错往往是混合型位错,即兼具刃型和螺型位错的特征。
晶体材料由规则排列的原子构成,一般把这些原子抽象成一个个体积可忽略的点,把它们排列成的有序微观结构称为空间点阵。逐层堆垛的原子构成一系列点阵平面的,称为晶面(可以将晶体中原子的排列情况想像成把橙子规则地装进箱子里的样子)。在无位错的晶体(完整晶体)中,晶面以等间距规则地排列。
③一个刃位错附近的晶面排列情况,如图1所示黑线代表伯格斯矢量方向,蓝线为位错线。
④刃位错附近的原子排列情况,沿平行于位错线方向观察若一个晶面在晶体内部突然终止于某一条线处,则称这种不规则排列为一个刃位错。如③和④所示,刃位错附近的原子面会发生朝位错线方向的扭曲以致错位。
刃位错可由两个量唯一地确定:第一个是位错线,即多余半原子面终结的那一条直线;第二个是伯格斯矢量(Burgers vector,简称伯氏矢量或柏氏矢量),它描述了位错导致的原子面扭曲的大小和方向。对刃位错而言,其伯氏矢量方向垂直于位错线的方向。
利用弹性力学理论可求得刃位错导致的应力场为:
σxx=―[μb*y(3x2+y2)]/[2π(1―v)(x2+y2)2]
σyy=―[μb*y(x2-y2)]/[2π(1―v)(x2+y2)2]
τzz=―[μb*x(x2-y2)]/[2π(1―v)(x2+y2)2]
其中 μ 为材料的剪切模量,b 为伯格斯矢量,ν 为泊松比,x 和 y 为直角坐标分量。 从上述解中可以看出,在含有多余半原子面的一侧(y > 0),材料承受压应力(σxx < 0);在多余半原子面“消失”的一侧(y < 0),材料承受拉应力(σxx > 0)。
螺位错
螺位错是将规则排列的晶面想像成一叠间距固定的纸片,若将这叠纸片剪开(但不完全剪断),然后将剪开的部分其中一侧上移半层,另一侧下移半层,形成一个类似于楼梯拐角处的排列结构,则此时在“剪开线”终结处(这里已形成一条垂直纸面的位错线)附近的原子面将发生畸变,这种原子不规则排列结构称为一个螺位错。
尽管形象不甚直观,但螺位错的应力场却远比刃位错的应力场容易求解。在一级近似下,螺位错应力场只有一个剪应力分量不为零:τr=-μb/2πr
式中 μ 为材料的剪切模量,b 为伯氏矢量,r 为所在点的极坐标极轴分量。该应力解显示,螺位错附近的应力场呈轴对称式分布,大小从内到外递减。但需要注意的是在位错核心区(r=0)处按上述解将得出应力无穷大,这是不符合实际情况的。因此上述应力表达式不适用于位错核心的严重畸变区。
混合位错
如前所述,刃位错的伯氏矢量垂直于位错线的方向,螺位错的伯氏矢量平行于其位错线方向。但实际材料中位错的伯氏矢量往往既非平行又非垂直于位错线方向,这些位错兼具了刃位错和螺位错的特征,称为混合位错。
位错的观测。间接观测:若材料中的位错线与材料表面相交(俗称位错“露头”),则交点处附近由于位错应力场的存在,其化学稳定性将低于表面的其它部分。若用酸性腐蚀剂(如氢氟酸和硝酸的混合溶液)对这样的表面进行腐蚀,则位错“露头”处的腐蚀速度将远高于其它部分,可形成一个“腐蚀坑”。再利用一些表面显微观察技术(如扫描电子显微镜干涉显微镜等等)便可以观察到位错的“露头”位置。在干涉显微镜下,经上述方法制备得到硅片表面位错腐蚀坑的形态,根据腐蚀坑边缘的形状可以确定硅片的晶体学取向——椭圆形代表硅片表面为(100)晶面,三角形代表硅片表面为(111)晶面。
若施加外力令材料发生一系列微小变形,则每次变形后某一特定位错都将处于不同的位置。如果每次变形后都对材料表面进行腐蚀,则同一位错形成的一系列腐蚀坑将粗略地显示出位错运动的轨迹。
进行上述观测的前提是材料表面能加工到具有足够高的光洁度,或者说足够低的粗糙度。
利用透射电子显微镜(Transmission Electron Microscope,简称TEM)可直接观察到材料微结构中的位错。TEM观察的第一步是将金属样品加工成电子束可以穿过的薄膜。在没有位错存在的区域,电子通过等间距规则排列的各晶面时将可能发生衍射,其衍射角、晶面间距及电子波长之间满足布拉格定律(Bragg's law)。而在位错存在的区域附近,晶格发生了畸变,因此衍射强度亦将随之变化,于是位错附近区域所成的像便会与周围区域形成衬度反差,这就是用TEM观察位错的基本原理,因上述原因造成的衬度差称为衍射衬度。
所有位错都只能以位错环的形式终结于晶粒的内部。
用TEM观察位错时,放大倍数一般选在5万到30万倍之间,这远未达到TEM放大倍数的极限。部分TEM还配有对试样进行在观察中原位加热/变形的装置,可以直接对位错的运动进行实时观察。
场离子显微镜(Field ion microscopy,简称FIM)和原子探针(atom probe)技术提供了放大倍数更高(一般在300万倍以上)的观测方法,可在原子尺度对材料表面的位错进行直接观测。
位错源
材料中的位错密度会随着塑性形变的进行而增加。由这一关系可以推测,材料内部必然存在着位错的起源与增殖的机制,这些机制在外加应力的作用下将被激活,以提供增加的位错数。
人们已发现材料中存在以下三种位错的起源(成核)机制:均匀成核、晶界成核和界面成核,其中最后一种包括各种沉淀相、分散相或增强纤维等等。
位错的增殖机制主要也有三种机制:弗兰克-里德位错源(Frank-Read source)机制、双交滑移增殖机制,和攀移增殖机制。
滑移塑形
在1930年代以前,材料塑性力学行为的微观机理一直是严重困扰材料科学家重大难题。1926年,苏联物理学家雅科夫·弗仑克尔(Jacov Frenkel)从理想完整晶体模型出发,假定材料发生塑性切变时,微观上对应着切变面两侧的两个最密排晶面(即相邻间距最大的晶面)发生整体同步滑移。根据该模型计算出的理论临界分剪应力τm 为:
其中G 为剪切模量。一般常用金属的G 值约为104MPa~105MPa,由此算得的理论切变强度应为103MPa~104MPa。然而在塑性变形试验中,测得的这些金属的屈服强度仅为0.5~10MPa,比理论强度低了整整3个数量级。这是一个令人困惑的巨大矛盾。
1934年,埃贡·欧罗万(Egon Orowan),迈克尔·波拉尼(Michael Polanyi)和 G.I. 泰勒(G. I. Taylor)三位科学家几乎同时提出了塑性变形的位错机制理论,解决了上述理论预测与实际测试结果相矛盾的问题。位错理论认为,之所以存在上述矛盾,是因为晶体的切变在微观上并非一侧相对于另一侧的整体刚性滑移,而是通过位错的运动来实现的。一个位错从材料内部运动到了材料表面,就相当于其位错线扫过的区域整体沿着该位错伯格斯矢量方向滑移了一个单位距离(相邻两晶面间的距离)。这样,随着位错不断地从材料内部发生并运动到表面,就可以提供连续塑性形变所需的晶面间滑移了。与整体滑移所需的打断一个晶面上所有原子与相邻晶面原子的键合相比,位错滑移仅需打断位错线附近少数原子的键合,因此所需的外加剪应力将大大降低。
在对材料进行“冷加工”(一般指在绝对温度低于0.3 Tm下对材料进行的机械加工,Tm 为材料熔点的绝对温度)时,其内部的位错密度会因为位错的萌生与增殖机制的激活而升高。随着不同滑移系位错的启动以及位错密度的增大,位错之间的相互交截的情况亦将增加,这将显著提高滑移的阻力,在力学行为上表现为材料“越变形越硬”的现象,该现象称为加工硬化(work hardening)或应变硬化(strain hardening)。缠结的位错常能在塑性形变初始发生时的材料中找到,缠结区边界往往比较模糊;在发生动态回复(recovery)过程后,不同的位错缠结区将分别演化成一个个独立的胞状结构,相邻胞状结构间一般有小于15°的晶体学取向差(小角晶界)。
由于位错的积累和相互阻挡所造成的应变硬化可以通过适当的热处理方法来消除,这种方法称为退火。退火过程中金属内部发生的回复或再结晶等过程可以消除材料的内应力,甚至完全恢复材料变形前的性能。
攀移
刃位错的攀移位错可以在包含了其伯格斯矢量和位错线的平面内滑移。螺位错的伯氏矢量平行于位错线,因此它可以在位错线所在的任何平面内滑移。而刃位错的伯氏矢量垂直于位错线,所以它只有一个滑移面。但刃位错还有一种在垂直于其滑移面方向上的运动方式,这就是攀移,即构成刃位错的多余半原子面的伸长或缩短。
攀移的驱动力来自于晶格中空位的运动。若一个空位移到了刃位错滑移面上与位错线相邻的位置上,则位错核心处的原子将有可能“跃迁”到空位处,造成半原子面(位错核心)向上移动一个原子间距,这一刃位错“吸收”空位的过程称为正攀移。若反之,有原子填充到半原子面下方,造成位错核心向下移动一个原子间距,则称为负攀移。
由于正攀移导致了多余半原子面的退缩,所以将使晶体在垂直半原子面方向收缩;反之,负攀移将使晶体在垂直半原子面方向膨胀。因此,在垂直半原子面方向施加的压应力会促使正攀移的发生,反之拉应力则会促使负攀移的发生。这是攀移与滑移在力学影响上的主要差别,因为滑移是由剪应力而非正应力促成的。
位错的滑移与攀移另一处差异在于温度相关性。温度的升高能大大增加位错攀移的概率。相比而言,温度对滑移的影响则要小得多。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市