垂线偏差

测绘学术语

垂线偏差是指同一测站点上铅垂线与椭球面法线之间的夹角u。u通常用南北方向分量ζ和东西方向分量η表示。地面点的垂线同其在椭球面上对应点的法线之间的夹角,它表示大地水准面的倾斜。垂线偏差通常用两个分量来表示,一个是子午圈分量ξ,即垂线偏差南北分量;一个是卯酉圈分量η,即垂线偏差东西分量。

定义
同一测站点上铅垂线椭球面法线之间的夹角u,即是垂线偏差。
u通常用南北方向分量ζ和东西方向分量η表示。如图《垂线偏差》所示:
垂线偏差的另一定义是地面点的垂线方向同正常重力方向之间的夹角。这两种定义的差异,就是正常重力方向同椭球面法线之间的夹角,它位于子午面内。这个差值可以从理论上算出。两种垂线偏差可以相互换算。
垂线偏差可以用于计算高程异常、大地水准面差距,推求平均地球椭球或参考椭球的大小、形状和定位,并用于天文大地测量观测数据的归算,也用于空间技术和精密工程测量。按选取的椭球不同,垂线偏差可分为绝对垂线偏差和相对垂线偏差。
分类
绝对垂线偏差
又称重力垂线偏差,是垂线同平均地球椭球面法线之间的夹角。因为平均地球椭球是不变的,所以过地面点的法线或正常重力线也是不变的。因而垂线偏差具有绝对意义,它可以利用重力异常,按韦宁·迈内兹公式计算。
在经典的地球形状理论中,需要知道大地水准面上的垂线偏差,因而需将地面点的垂线归算到大地水准面上,组成大地水准面上相应的垂线偏差。由于这种归算同大地水准面和地面间的质量分布有关,而尚不能准确地知道这种分布,因此,计算大地水准面上的垂线偏差分量,理论上就不可能是严密的。为了避免这种不严密性,可采用莫洛坚斯基理论计算地面点的垂线偏差。用零次趋近的莫洛坚斯基公式计算的地面垂线偏差和用韦宁·迈内兹公式算出的数值是一样的。
在重力资料稀少的情况下,垂线偏差还可以根据地壳均衡假说来计算,这样的垂线偏差称为地形均衡垂线偏差。
相对垂线偏差
又称天文大地垂线偏差,是垂线和参考椭球面的法线之间的夹角。因为不同的参考椭球过地面点的法线不同,垂线偏差也各不相同,所以它具有相对意义。相对垂线偏差可以利用天文和大地经纬度来计算。
计算公式
(1)垂线偏差公式:
ξ=φ-B,η=(λ-L)cosφ。已知一点的天文和大地经、纬度,就可求得垂线偏差。
A=α-(λ-L)sinφ-(ξsinA-ηcosA)cotZ(天)
简化 A=α-(λ-L)sinφ 或 A=α-ηtanφ
(3)这样可以将天文方位角α归算为大地方位角A。
天文纬度φ、经度λ同大地纬度B、经度L的关系:B= φ-ξ;L= λ-ηsecφ
依据上式,便可将天文纬度和经度换算为大地纬度和经度
垂线偏差法
研究背景
当前国际上利用卫星测高数据反演海洋重力场的方法主要有5 种:①最小二乘配置法;②Stokes公式逆运算法;③Hotine 公式逆运算法;④直接求解法;⑤垂线偏差方法等。其中,最小二乘配置法需要预先确定各参量之间的协方差阵并解算大型矩阵,Stokes、Hotine 公式的逆运算法易受动力海面地形模型误差的影响。而直接求解法在理论上存在一些近似。由于海面高的一次差分技术可以有效减弱动力海面地形、测高卫星径向轨道误差等长波误差的影响,精确计算大地水准面在经、纬度方向的梯度,从而精确确定海域大地水准面上的测高垂线偏差;另一方面,根据物理大地测量的边值理论,各扰动场元之间存在固定的函数关系。因此,可以利用大地水面上高精度的测高垂线偏差计算海洋上高精度的大地水准面、重力异常等扰动场元,上述理论即为卫星测高中的“垂线偏差法”。它为利用卫星测高资料反演高精度、高分辨率的海洋重力场提供了理论依据,标志着卫星测高技术在大地测量中的应用逐步趋于成熟。
垂线偏差法需要先利用卫星测高数据计算海洋上的测高垂线偏差,Sandwell、Olgiati、Hwang先后提出了不同的测高垂线偏差计算方法,它们也是当前国际上测高垂线偏差的主要计算方法。垂线偏差法的另一重要步骤是如何利用测高垂线偏差精确计算海洋重力场,Molodenskii、Sandwell、Hwang 等在不同时期分别提出了各自利用垂线偏差法确定海洋重力场的原理,尤其是Molodenskii、 Hwang利用测高垂线偏差计算海域大地水准面和重力异常的方法在理论上比较严密,在实际工程中应用得比较普遍。研究将重点研究Sandwell 、Olgiati 、 Hwang 三种测高垂线偏差的计算方法和 Molodenskii、 Hwang利用测高垂线偏差法确定海洋大地水准面和重力异常的原理,分析比较了它们之间的异同,总结了它们的优缺点,为科学地利用卫星测高数据反演海洋重力场提供理论依据。
测高垂线偏差的计算方法
计算测高剖面垂线偏差的基本原理就是根据测高点测高记录中的位置和时间信息,利用测高数据的一次差分计算测高剖面的数据导数,进而计算海洋上的测高垂线偏差。
测高垂线偏差计算方法间的比较
据上文可知,Sandwell 垂线偏差计算方法仅能计算海洋上测高卫星地面轨迹交叉点的(ξ, η ),利用该方法计算了TOPEX/POSEIDON、ERS -1/2在单个覆盖周期内的交叉点及该点的(ξ, η )。鉴于测高卫星的“冻结”轨道特征,测高卫星在各覆盖周期内地面轨迹交叉点的位置精确重复,但由于不同周期不同观测环境的影响,各周期测高卫星地面轨迹在海洋上的有效交叉点数目不尽相同。实验计算结果表明,TOPEX/POSEIDON 卫星地面轨迹交叉点每周期有 7000 个左右,ERS -1/2 卫星(在覆盖周期为 35 天时)约为55000,其空间分布比较稀松,也不均匀。因此,Sandwell 测高垂线偏差计算方法虽然理论严密,在交叉点计算的垂线偏差的精度也比较高,但不能满足利用卫星测高资料反演高分辨率海洋重力场的要求 。
Olgiati 测高垂线偏差计算方法能够计算测高卫星沿迹逐个采样观测点和交叉点的(ξ, η ),(ξ, η ) 的空间分辨率很高,为利用卫星测高数据反演高分辨率海洋重力场提供了条件。但该方法需沿轨迹于相邻交叉点之间各观测点处内插在垂直于轨迹方向的垂线偏差,影响了(ξ, η )的精度和最终所反演重力场的质量。
由于上述两种方法得到的(ξ, η )不规则地分布在观测点或交叉点上,在利用它们计算海洋重力场之前,还必须将其处理成均匀格网上的平均值(ξ, η )。而 Hwang 先利用测高数据计算各观测点在沿迹方向的垂线偏差 ε,然后根据观测方程(10)直接计算测高垂线偏差子午、卯酉分量在格网上的平均值( ξ, η )。该方法不仅理论严密,而且
不需要计算测高卫星地面轨迹的交叉点,计算过程简便,所得(ξ, η )的分辨率比较高,如利用Seasat、Geosat、TOPEX/POSEIDON 卫星测高资料可计算全球 82° S ~ 82° N 海域 2′×2′ 的(ξ, η ),使利用卫星测高资料反演高精度、高分辨率海洋重力场成为可能。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市