微分对策

数学术语

研究两个或多个决策人的控制作用同时施加于一个由微分方程描述的运动系统时实现各自最优目标的对策过程的理论。微分对策的最优策略所应满足的必要条件,可象最优控制理论中的极大值原理那样导出。微分对策实质上是一种双(多)方的最优控制问题,而通常的最优控制问题可看成是单人微分对策。微分对策还可推广到由差分方程描述的离散时间动态系统,因而常常更广义地称为动态对策。

理论简介
微分对策(Differential Game)的研究始于20世纪40年代。R.艾萨克斯在1965年对完全对抗的二人零和对策问题的研究,奠定了微分对策理论的基础。微分对策已应用于军事、公安、工业控制、航天航空、环境保护、海洋捕捞、经济管理和市场竞争等方面。微分对策所提供的数学模型还可能应用于更多的方面
例如,在微分对策中,应用突变论的概念可导致对不连续性和奇异性进行分类研究。此外,还可探讨当约束条件、控制策略或合作关系处于模糊情况时(见模糊控制)的微分对策问题。在对策问题中,决策人都以对方的行为模型作为自己决策的依据,因此微分对策的研究与心理学、人工智能、行为科学等学科都有密切的关系。
理论发展
自 20 世纪 50 年代初以来,由于制导系统拦截飞行器的引入、 人造卫星的发射和航天中有关机动追击问题的需要,美国著名的 Rand 公司在空军资助下,以美国数学家 Issacs 博士为首的组织开展了对抗双方都能自由决策行动的理论追逃问题研究。他们把现代控制理论中的一些概念、 原理与方法引入对策论中,取得了突破性的成果, 撰写了 4 篇研究报告,形成了微分对策的最初研究成果。
1965 年,Issacs整理出版了《微分对策》一书,这是世界上第一部微分对策的专著。该书的出版标志着微分对策理论的诞生。此后,由于军事方面的原因,微分对策的研究引起了世界各国的普遍关注,特别是美国和前苏联,美苏出于军备竞赛的需要,对空战、 核导弹与人造卫星拦截、 电子战等方面提出了各种类型的微分对策模型,使得军事微分对策得以迅速发展。1971 年,美国科学家 Friedman 采用了两个近似离散对策序列精确定义了微分对策,建立了微分对策值与鞍点存在性理论,从而奠定了微分对策理论的数学基础。自《微分对策》出版以来,微分对策理论与应用有了很大发展。除了定量微分对策和定性微分对策不断完善外,随机微分对策、 多人合作微分对策、 非合作微分对策和主从微分对策等方面的研究也取得了很大进展。除了 Issacs,Nash,Friedman外,Krasovskii,Leitmannt 和Petrosjan等均对微分对策理论的发展作出了杰出的贡献。
美国著名数学家Nash 最先将微分对策理论引入经济学研究领域,并由于他的出色工作而获得了诺贝尔经济学奖。近年来,经济学领域中对微分对策的研究十分活跃。周边经济和微经济等方面的许多课题都可用微分对策的理论来研究。
我国对微分对策的研究起步较晚,研究人员也不多,以张嗣瀛院士为代表的研究群体用现代控制理论的思想和方法对微分对策作过系统的研究,提出了双边控制的“定量极值原理”和“定性极值原理”。
构成要素
构成各类微分对策的要素可归结为:
①参与对策的各方(决策人)具有不同的利益。
②决策人根据自己拥有的信息作决策。
③按照对策规则,决策人的地位可能不同。
④对策的结局由诸决策人的控制作用共同决定。对应这些要素的不同情况,可将微分对策作各种形式的分类。按照对策人的数目分类,如n人微分对策,n可取为2、3、…。按照结局分类,如结局的得失在连续范围内变化的问题称定量(程度)微分对策,结局取“赢”或“输”二者居一的问题称定性(种类)微分对策。也可按照决策人利益的性质分类,如决策人的利益为对抗时称零和微分对策(即各方得失总和为零),决策人有竞争又有合作时称非零和微分对策(如上下级之间,共同垄断同一市场的几个公司之间)。
按照决策人间合作程度,又有组队最优、纳什平衡帕雷托最优和协商策略等多种形式。在上下级多人决策问题中,通常要求上级决策人先宣布自己的策略,下级按照自身利益作出响应。这种策略如能使下级的行动符合上级的目标,这类微分对策便称为上下级对策(斯塔克尔贝格对策)或激励对策。此外,依对策问题中动态系统类型,还有偏微分对策(动态系统用偏微分方程描述)和随机微分对策(存在随机的干扰或观测误差的微分对策)。在微分对策中,决策人拥有信息的多寡,对决策的自由度和结局的优劣有明显的影响。定量地分析这些影响,并对用于信息采集和传输(或破坏对方的采集与传输)的费用与可能取得的收益进行权衡的问题,称为信息分配和信息结构问题。
相关信息
二人零和微分对策
这是研究最多和应用较广的一种微分对策,其动态过程可用以下状态方程(见状态空间法)描述: 式中各个变量的含义可用追躲问题为例来说明。状态变量 x及其导数凧 表示追方和躲方间的相对位置和相对速度等;u为追方的控制作用,v为躲方的控制作用,它们共同决定x的变化;t表示时间。再用性能指标 描写追击的总效果,它可能是脱靶量、命中时间等。式中T是对策终止时间,它由反映结局(例如击中)的条件Ψ[x(T)]=0来确定。二人零和微分对策问题的求解,按提法的不同有两种情况。
①在定量微分对策的提法中,追方选择u使J尽量小,而躲方选择v使J尽量大,因此问题的解u*、v*应满足
J(u*,v)≤J(u*,v*)≤J(u,v*)
这样的(u*,v*)称为鞍点策略。在一定条件下,最优控制理论中的极大值原理可推广应用于这类问题。这种“双方极值原理”指出了鞍点策略应满足的必要条件: 式中u*(t),v*(t)对于一切t∈[t0,T]均满足以上条件,分别表示对v取极大值与对u取极小值,而哈密顿函数规定为 其中λi(t)为协态变量,它满足伴随方程和边界条件,这里μ 为正值常数乘子。各式中的x(t)是与鞍点策略(u*,v*)相对应的最优轨线。在应用双方极值原理来解决具体的微分对策问题时,除了最优控制理论中所遇到的共同性难点(如解两点边值问题)以外,还会由于min和max运算而引入许多间断性、奇异曲面等问题。奇异曲面的研究非常重要,它关系到问题的求解是否完整。在微分对策中可以出现一些具有新性质的奇异曲面,它们比单方最优控制问题中的奇异曲面要复杂得多。对于奇异曲面,尚未建立起系统的理论和计算方法。
②在定性微分对策的提法中,只考虑某种结局能否实现的问题(如击中或捕获),可用x(t)能否达到目标集Ψ(x)≤0来描述。追方选择u(t)力图实现此目标,而躲方选择v(t)力图避免此目标。若双方控制能力具有一定均势,则x处于某一区域内时可以捕获而在另一区域时能够逃逸。这两个区域称为捕获区和逃逸区,它们的分界面称为界栅(或壁垒)。微分对策为追逃问题提供了在竞争环境中较为深刻实用的数学模型。在空空导弹的设计中,最优控制和微分对策都被应用于制导规律的研究。微分对策对目标加速度估值误差不敏感,比最优控制更适用于设计拦截机动目标地导弹。
应用领域
军事领域
微分对策理论起源于军事问题,由于国防和军事目的的需要,军事领域中的微分对策研究一直是微分对策理论发展的动力和热点。特别在当今世界,高科技手段在军事中的广泛应用,使得军事领域中的微分对策问题研究显得尤为重要。
基于安全保密的原因,军事领域中的微分对策研究的最新资料很难在公开发表的文献中找到,但可以想象,该领域中的微分对策研究将与电子信息技术紧密结合,以微分对策的数值算法研究为重点方向。一些较为实用的控制方法,如自适应控制、 学习控制等将在这类微分对策的研究中发挥重要作用。由于科学技术在现代战争中的应用,多目标多任务的协同作战是现代战争的一个重要特征,因此,多人微分对策的研究也将成为军事领域中的微分对策研究的重要课题。
经济领域
近年来,经济领域中的微分对策研究非常活跃,许多宏观经济中的多边竞争、 合作问题均可用微分对策的理论和方法解决,为决策者提供可靠的决策方案。同时,经济领域中的微分对策的研究也丰富和发展了微分对策理论。
Engwerda、Fershtman 和 Kamien ,Levine 和 Brociner 在微分对策方面的大量研究工作均基于经济领域中的实际问题,他们在应用微分对策的思想和方法解决经济问题方面取得了一系列重要成果,为微分对策基础理论的发展做出了重要贡献。由于现代社会信息技术的发展,经济领域中的合作、 竞争将更加激烈,涉及多个方面,因此,多人微分对策的研究必将成为经济领域中微分对策研究的主要课题。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市