旧量子论

物理学术语

旧量子论是一些比现代量子力学还早期,出现于1900年至1925年之间的量子理论。虽然并不很完整或一致,这些启发式理论是对于经典力学所做的最初始的量子修正。旧量子论最亮丽辉煌的贡献无疑应属玻尔模型

历史
马克斯·普朗克对于光波的发射和吸收的研究,点燃了旧量子论。后来,爱因斯坦发表了固体比热的杰作。紧接着,应用量子原理于原子运动,彼得·德拜解释了比热的异常现象。这些贡献开启了旧量子论如火如荼的发展。
1913年,玻尔发表了对应原理。应用这原理,他又建构了氢原子玻尔模型,成功地解释出氢原子的发射谱线
整个1910年代,一直到1920年代中期,物理学家应用旧量子论为一个解析原子问题的崭新利器。但是有成功也有失败,效果并不一致。在这期间,科学家知晓了分子的旋转和振动谱线,也发现了电子自旋;但这些也引起了半整数量子数的困惑。爱因斯坦提出了零点能量理论。阿诺·索末菲半经典地量子化相对论性氢原子。克拉莫给予了斯塔克效应(Stark effect)一个合理的解释。萨特延德拉·玻色和爱因斯坦正确地找到了光子的量子统计。
于1924年,克拉莫发表了量子色散理论,借着运动轨道的傅里叶分量,可以计算从一个量子态跃迁至另一个量子态的概率。通过与海森堡的合作,这点子被延伸为一个半经典的,以类似矩阵的形式来描述的原子跃迁概率。海森堡继续这研究,以这跃迁方法来重新表述量子理论,原创出矩阵力学。
同样于1924年,德布罗意提出物质的波动理论。在1926年,薛定谔找到了一个量子波动方程,能够清楚明了,前后一致地复制旧量子论的所有成果。后来,薛定谔证明了他的波动力学和海森堡矩阵力学是等价的。波动力学和矩阵力学共同结束了旧量子论的时代。
绪论
旧量子论是一些比现代量子力学还早期,出现于1900年至1925年之间的量子理论。虽然并不很完整或一致,这些启发式理论是对于经典力学所做的最初始的量子修正。旧量子论最亮丽辉煌的贡献无疑应属玻尔模型。自从夫朗和斐于1814年发现了太阳光谱的谱线之后,经过近百年的努力,物理学家仍旧无法找到一个合理的解释。而玻尔的模型居然能以简单的算术公式,准确地计算出氢原子的谱线。这惊人的结果给予了科学家无比的鼓励和振奋,他们的确是朝着正确的方向前进。很多年轻有为的物理学家,都开始研究量子方面的物理。因为,可以得到很多珍贵的结果。
直到今天,旧量子论仍旧有声有色地存在着。它已经转变成一种半经典近似方法,称为WKB近似。许多物理学家时常会使用WKB近似来解析一些极困难的量子问题。在1970年代和1980年代,物理学家Martin Gutzwiller发现了怎样半经典地解析混沌理论之后,这研究领域又变得非常热门。
基本原理
旧量子论的基本原理谈到原子系统的运动是量子化的,离散的。原子系统遵守经典力学;但不是每一种运动都合法,只有那些遵守旧量子条件的运动是合法的:
其中, 是动量, 是对应的坐标, 是整数量子数,h是普朗克常数
旧量子条件又称为威耳逊-索末菲量子化定则,是由威耳逊和索末菲各自发现的。旧量子条件公式的闭路积分取于整个运动的一周期,是相空间的面积,称为作用量。由于在这里,作用量被量子化为以普朗克常数为单位的整数,因此,普朗克常数时常被称为作用量的量子。
为了要符合旧量子条件,经典运动必须是可分的,意思是说,运动方程可以分为几个独立部分,每一个独立部分都包含了一个不同的坐标,而每一个坐标的方程部分所描述的运动都是周期性的。不同部分描述的运动不一定会有同样的周期,它们的周期甚至是互相不可通约的。可是,整个系统必须有一组可分的坐标,每一个坐标的方程部分都分别描述一个周期性的运动。
使用旧量子条件的动机,一个是对应原理,还有一个就是量子化的物理量必须是缓渐不变量的实际物理观察。例如,给予谐振子普朗克量子化定律,这两个条件中,任意一个条件决定了量子化一个一般系统的正确经典物理量。
范例
一维位势
一维问题的解析相当容易。给予任意能量E,从能量守恒定律,可以计算出粒子的动量:
其中,V(q)是坐标为q的地点的位势
转向点是粒子动量消失的位置。在经典转向点之间,将这动量的公式积分于所有q的可能值,再加入旧量子条件,就可以得到旧量子条件的方程。
假设,这问题是盒中粒子问题。则旧量子条件方程为
其中,n是正整数,L是盒子的长度。
那么,容许的动量是
容许的离散能级
旋转子
在一根长度为 R的无质量刚杆的一端,连结著一个质量为M的粒子,称这连结体为旋转子。假设,刚杆的另外一端固定于一个固定点,则旋转子可以绕着这固定点作旋转运动。采用极坐标系,这旋转子的旋转运动的拉格朗日量L是
其中,是角坐标。
角坐标的共轭动量J是
旧量子条件要求的周期、J,两个物理量的乘积为普朗克常数乘以整数倍数n:
也就是说,角动量J是约化普朗克常数的整数倍数。将这旧量子条件带入玻尔模型,就可以得到氢原子的能级!
氢原子
氢原子物理的角部分只是一个旋转子,给出量子数l、m。剩余的径向部分是在位势作用下的周期性一维运动,可以解析。
给予固定值的总角动量L,一个经典开普勒问题的哈密顿量H是(为了简化方程,重定义质量的单位和能量的单位。这样,可以吸收两个常数:质量和库仑定律的系数 ):
其中,r是径向坐标,p是径向动量。
设定能量为常数E,径向动量是
由于位势乃反平方连心势,经典的电子运动轨道是椭圆。近拱点和远拱点分别是当p=0时电子位置的径向坐标:
所以,旧量子条件是
其中,是一个新的量子数。
经过一番运算,可以得到
将量子化的角动量代入,稍加编排,可得能量为
两个量子数k、l共同决定了能量。设定主量子数n:n=k+l。由于k是非负整数, l的容许值必须小于或等于n。除了某些小地方以外,这结果与玻尔模型的能级结果完全相同。
前述关于氢原子的半经典理论称为索末菲模型。其轨道是各种不同尺寸的椭圆轨道处于离散的倾斜平面。索末菲模型预测,原子沿着某直轴的磁矩,只能给出离散值。这预测似乎与旋转不变性相矛盾,但是却被施特恩-格拉赫实验证实是正确的。
克拉莫跃迁关系
旧量子论只能适用于特定的力学系统,能够用周期性的作用量-角度变量来分离的特别力学系统。旧量子论无法处理辐射的发射和吸收。虽然这样,亨德里克·克拉莫(Hendrik Kramers)找到了一个启发式,描述怎样计算辐射的发射和吸收。
克拉莫建议,应该傅里叶分析一个量子系统的轨道,将轨道依照轨道频率的倍数分解成调和函数
其中,下标n是轨道的量子数,在索末菲模型里,代表n,l,m量子数组,是轨道的角频率,k是傅里叶模态。
克拉莫注意到,只有当频率是轨道频率的整数倍数的时候,才会发生辐射的经典发射。在他的量子色散理论里,他提议两个物理态之间的跃迁可以比拟为辐射的经典发射。那么,辐射的发射率应正比于,如同在经典力学的应有的物理行为。克拉莫的描述并不精确,因为傅里叶分量的频率并不完全匹配能级之间的差距。这点子后来引导出矩阵力学的发展。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市