隙积术和会圆术

沈括在数学领域的两大重要研究成果

隙积术和会圆术是沈括在数学领域的两大重要研究成果,隙积术是用来计算诸如累棋、层坛、积罂(堆砌的酒坛子)一类堆垛物体的体积公式,其中包含了高阶等差级数的计算公式;会圆术是计算圆弧的弦、矢(弧的高)与弧长间数量关系的数学公式。

作品原文
算术求积尺之法,如刍萌、刍童、方池、冥谷堑堵鳖臑圆锥、阳马之类,物形备矣,独未有隙积一术。
古法:凡算方积之物,有立方,谓六幕皆方者,其法再自乘则得之。有堑堵,谓如土墙者,两边杀,两头齐。其法并上下广折半以为之广,以直高乘之。又以直高为股,以上广减下广,余者半之为勾,勾股求弦,以为斜高。有刍童,谓如覆斗者,四面皆杀。其法倍上长加入下长,以上广乘之,倍下长加入上长,以下广乘之,并二位,以高乘之,六而一。
隙积者,谓积之有隙者,如累棋、层坛及酒家积罂之类。虽似覆斗,四面皆杀,缘有刻缺及虚隙之处,用刍童法求之,常失于数少。予思而得之:用刍童法为上位,下位别列,下广以上广减之,余者以高乘之,六而一,并入上位。(假令积罂:最上行纵横各二罂,最下行各十二罂,行行相次。先以上二行相次,率至十二,当十一行也。以刍童法求之,倍上行长得四,并入下长得十六,以上广乘之,得之三十二,又倍下行长得二十四,并入上长,得二十六,以下广乘之,得三百一十二,并二位得三百四十四,以高乘之,得三千七百八十四。重列下广十二,以上广减之,余十,以高乘之,得一百一十,并入上位,得三千八百九十四。六而一,得六百四十九,此为罂数也。刍童求见实方之积,隙积求见合角不尽,益出羡积也。)
履亩之法,方圆曲直尽矣,未有会圆之术。凡圆田,既能拆之,须使会之复圆。古法惟以中破圆法拆之,其失有及三倍者。予别为拆会之术:置圆田,径半之以为弦,又以半径减去所割数,余者为股,各自乘,以股除弦,余者开方除为勾,倍之为割田之直径。以所割之数自乘倍之,又以圆径除所得,加入直径,为割田之弧。再割亦如之,减去已割之弧,则再割之弧也。(假令有圆田,径十步,欲割二步,以半径为弦,五步自乘得二十五,又以半径减去所割二步,余三步为股,自乘得九,用减弦外,有十六,开平方,除得四步为勾,倍之为所割直径。以所割之数二步自乘为四,倍之得为八,退上一位为四尺,以圆径除。今圆径十,已足盈数,无可除,只用四尺加入直径,为所割之弧,凡得圆径八步四尺也。再割亦依此法,如圆径二十步求弧数,则当折半,乃所谓以圆径除之也。)此二类皆造微之术,古书所不到者,漫志于此。
作品译文
算术中求物体体积的方法,如刍萌、刍童、方池、冥谷、堑堵、鳖臑圆锥、阳马等,各种物体的形状都齐备了,唯独没有隙积这一种算法。古代的算法,凡是计算物体的体积,有立方体,是指六个面都是正方形的物体。它的计算方法是把一条边自乘两次就求得了。有堑堵,是指像土墙一样的形状的物体,两个墙面是斜的,两头的面是直立的。它的截面积的算法是把上、下底面的宽相加,除以二,作为截面的宽,用直高与它相乘即得。再把直高作为股,用上底面的宽减去下底面的宽,得到的差数除以二作为勾,用勾股定理算出弦,就是它的斜边长。有刍童,是说像倒扣在地上的斗那样的形状,四个侧面都是斜面。它的计算方法是:把上底面的长乘以二,加下底面的长,再用上底面的宽乘它,把下底面的长乘以二,加上底面的长,再用下底面的宽乘它;加上这二项,用高乘它们,再取其六分之一,就得到了它的体积。隙积是指体积有空隙的堆垛体,像垒起来的棋子、分层筑造的土坛和酒店里堆起的酒坛一类的东西。它们虽然像倒扣的斗,四个侧面也都是斜的,但由于边缘有残缺和空隙的地方,如果用刍童法来算它,得出的数目常常比实际的少。我想出了一种算法:用刍童法计算出它的上位、下位,再列出它的下底宽,减去上底宽,把这一差数乘以高,取其六分之一,并入前面的数目即可以了。(如果有堆垛的酒坛子,最上层长、宽都是两只坛子,最下层长、宽都是十二只坛子,一层层相错开垛好。先从最上层数起;数到有十二只坛子处,正好是十一层。用刍童法来算,把上层的长乘以二得四,加下层的长得十六,用上层的宽来乘它,得三十二。又把下层的长乘以二得二十四,加上上层的长得二十六,用下层的宽来乘它,得三百一十二。上、下两位相加,得三百四十四,乘以高得三千七百八十四。另外把下层的宽十二减去上层的宽,得十,与高相乘,得一百一十。加上前面的数字得三千八百九十四。取其六分之一,得六百四十九。这就是酒坛子的数目。用刍童法算出的是“实方”的体积,用隙积法算出的是截剩部分拼合成的体积,可以求出多余的体积。)丈量土地的算法,方、圆、曲、直的都有了,但没有会圆的算法。凡是圆形土地,既能够拆开它,又必须使它合起来能恢复圆形。古代的算法只是用“中破圆法”拆开来计算,其误差有达三倍的。我另外设计了一种拆开、会合的方法:设置一块圆形土地,以其直径的一半作为弦;再从半径减去所割下的弧形的高,它们的差数作为股。弦、股各自平方,用弦的平方减去股的平方,它们的差平方作为勾,再乘以二,就是割下的弧形田的弦长。把割下的弧形田的高平方,乘以二,再除以圆的直径,所得的商加上弧形的弦长,便是割下的弧形田的弦长。再割一块田,其算法也如此,把总的弧长减去已割部分的弧长,就是再割田的弧长了。(假如有一块圆形田,直径为十步,想使割出的弧形高二步,就用圆半径五步作为弦,五步平方得二十五,用半径减去弧形的高二步,它们的差数三步作为股,平方得九。用它来减弦的数二十五,得十六,开平方得四,这就是勾,再乘以二就得弧的弦长。把圆弧的高二步自乘,得数为四,再乘以二得八,退上一位为四尺,用圆的直径相除。现今圆的直径为十,已经满了整十数,不除退上一位也可以。只需要将四尺加入弧弦长,就得出圆弧的弧长,共是八步四尺。再割一块田,也依照这种方法。如果圆弧直径是二十步,要求孤长,就应当折半,这就是所说的要用圆弧直径来除它。)这两类方法都是涉及精微的算法,是古书里所没有的。
作品赏析
沈括是一位卓越的数学家,在数学的许多领域内都取得了辉煌的成就,《隙积术和会圆术》记所记的隙积术和会圆术就是他的两大重要研究成果。  隙积术是用来计算诸如累棋、层坛、积罂(堆砌的酒坛子)一类堆垛物体的体积公式,其中包含了高阶等差级数的计算公式。沈括的研究开了中国垛积术研究的先河。后来,南宋时期的数学家杨辉发展了这一成果,创造了垛积术公式。
会圆术是计算圆弧的弦、矢(弧的高)与孤长间数量关系的数学公式。在我国数学史上,沈括第一个利用弦、矢求出了孤长的近似值。这一公式为元代郭守敬创制《授时历》提供了直接的数学依据。
沈括的数学成就赢得了中外科学家的高度赞扬。日本数学家三上义夫在其《中国算学之特色》一书中,称赞他是世界数学史上独一无二的杰出人物。客观地看,这一评价基本上还是符合事实的。
作者简介
沈括 (1031—1095),字存中,浙江钱塘(今杭州市)人。北宋天圣九年,出生于一个下层官吏的家庭,家境并不富裕,沈括常自谓“出自寒门”。母徐氏,是苏州吴县人,知书达礼,谙通文墨;父沈周,为官清正,不主张严刑苛法,到泉州任职时,沈括随往。
沈括的一生,可以概括为从政和科学研究两个方面,兹举其要点:公元1070(熙宁三年),参加了王安石变法,并且是改革派的中坚人物;公元1075(熙宁八年),出使辽国,“正驳斥辽国无理争地要求,维护了宋室主权;继而镇守延州(今陕西延安),加强武备,设防边睡,有效地抵御西夏。沈括一向重视兴修水利、监制兵器、管理财政等,希望促进国家强盛。沈括在从政的同时,一生重视科学研究和科学发明的记载。所进行的科研,堪称广博,诸如观测天象,绘制浑仪景表,补修《奉元历》;在数学方面,创立“隙积术”和“会圆术”;在物理学方面,发现地磁偏角的存在,早于欧洲400多年,对共振规律也有研究;在地质学方面,从岩石生物遗迹中推论出冲积平原的形成,提出石油的命名。此外,钻研药用植物与医术。沈括平生著述颇多,著名的传世之作有《梦溪笔谈》、《长兴集》、《苏沈良方》等。在《资治通鉴长编》中,尚有一部分他所撰写的《乙卯入国奏请》、《入国别录》等资政史料。
公元1082(元丰五年),因徐禧失陷永乐城,沈括连累受贬,居润州,筑梦溪园(今镇江东郊),潜心著述,至绍圣元年复官爵,公元1095辞世,终年65岁。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市