伽罗瓦上同调

数学领域名词

数学中,伽罗瓦上同调是一套用群上同调研究伽罗瓦群的作用的技术。具体言之,假设伽罗瓦群 作用在一个群 (通常是数论中出现的代数结构,如 等等)上,伽罗瓦上同调研究相关的群上同调 。这些群通常具有重要的数论或算术代数几何意义。

基本概念
伽罗瓦上同调是现代代数数论的基石之一。
伽罗瓦上同调最早在1950年代被提出,主要与克劳德·谢瓦莱在类域论上的工作相关。这套理论的目的在以群上同调“代数地”阐释类域论,避免使用L-函数。哈瑟原理在伽罗瓦上同调的框架下能得到清晰的描述。
伽罗瓦上同调关系到算术代数几何中的许多重要问题,例如椭圆曲线上的整点个数。作为下降理论在平展拓扑上的应用,第一个伽罗瓦上同调群分类了概形 上的扭子,这是主丛在代数几何上的推广。借着下降理论,可以用伽罗瓦上同调研究二次型式、中心单代数与 Severi-Brauer 簇等等结构。
上同调群
一种重要的拓扑不变性质。可仿照线性空间的对偶空间的定义方式引入上同调群。若K是一个n维单纯复形,Cq(K)是q维整系数链群,则同态c:Cq(K)→Z(整数加群)称为K的一个q维上链。对于任意两个q维上链c和d,它们的和是这样的上链,它在任意xq∈Cq(K)上取值:(c+d)(xq)=c(xq)+d(xq),所有q维上链在上述加法下成为一个交换群,它就是同态群Hom(Cq(K),Z),称为K的q维上链群,记为C(K).为区别起见可把原来的链群Cq(K)称为下链群.对于原来的边缘同态可用对偶同态来定义上边缘同态算子,设:q+1: Cq+1(K)→Cq(K),
定义δ:C(K)→C(K),对于K的q维上链c,δc是一个q+1维上链,它在任意xq+1∈Cq+1(K)上取值为:
δc(xq+1)=c(q+1xq+1).
从而δ°δ=0(或写成δ°δ=0).由此可定义C(K)的子群:
Z(K)=ker δ 与 B(K)=Im δ,
分别称为q维上闭链群与上边缘链群。商群:H(K)=Z(K)/B(K) (q∈Z)
称为复形K的q维上同调群,这些群中元素分别称为上闭链、上边缘链与上同调类.相应原来的同调群可称为下同调群。
设f:K→L是单纯映射,f={fq:Cq(K)→Cq(L)|q∈Z}是这单纯映射诱导的链映射,fq的对偶同态f:C(L)→C(K) (q∈Z)定义为,对于任意c∈C(L),f(c)是K的q维上链,在K的q维链xq上取值(f(c))(xq)=c(fq(xq)).它满足δ°f=f°δ,称f为上链映射,因此f诱导出上同调群之间的同态:f:H(L)→H(K) (q∈Z)(注意与f:K→L方向相反).同样地,可研究链同伦、连续映射用单纯逼近定理得到的诱导同态和类似于下同调群之间诱导同态的性质,所以上同调群也具有拓扑不变性、同伦型不变性.设K是n维单纯复形,其上、下同调群H(K)与Hq(K)的秩分别记为R与Rq,它们的挠子群分别记为T(K)与Tq(K) (q∈Z),则上、下同调群之间有关系:
其中T-1(K)理解为零群。这表明上同调群由下同调群完全决定。
代数数论
数论的一个重要分支,它以代数整数,或者代数数域为研究对象。不少整数问题的解决要借助于或者归结为代数整数的研究。因此,代数数论是整数研究的一个自然的发展。代数数论的发展也推动了代数学的发展。
代数数论主要起源于对费马猜想的研究。费马猜想(不定方程xn+yn=zn(n>2)没有xyz≠0的整数解)的证明可归结为n=4及n为奇素数情形的证明。19世纪中叶,库默尔试图利用n次本原单位根ζ把方程写成,从而证明费马猜想。但这需要有一个前提,即在分圆域Q(ζ)(添加单位根ζ到有理数域上生成的扩域)中,“整数”也像普通整数一样,可以唯一地分解成素数的乘积。但在狄利克雷的启发下,库默尔发现分圆域中的“整数”分解成素因子的乘积不具有唯一性。库默尔因此引入了“理想数”概念,每个“理想数”可以唯一地分解成素因子的乘积,这样建立了分圆域上的数论。戴德金把库默尔的工作系统化并推广到一般的代数数域,奠定了代数数论的基础。
高斯关于二次域的研究是代数数论的另一个重要起源。1801年,高斯发表的著名著作《算术研究》,展示了他的一个杰出的思想:把有理数域和有理整数环上的许多初等数论问题,放到更大的域和环一一二次域和它的代数整数环上来研究,这也导致了代数数论的开端。
代数数论也是活跃的数学前沿理论。一方面是对一些古典问题得出新的结果。例如,1801年高斯曾提出过两个猜想:(1)只有有限多个类数为1的虚二次域;(2)存在无限多个类数为1的实二次域。关于(1),1934年,海布雷恩证明了当d(k)(k为有理数域的二次扩域,d(k)为k的判别式)→∞时,hk(k的类数)→∞;1935年,西格尔证明了1966年贝克,1967年斯塔克证明了类数为1的虚二次域的虚二次域只有9个:d=1,2,3,7,11,19,43,67,163。猜想(2)仍在研究之中。另一方面就是不断开辟新的研究领域,如数域的阿贝尔扩张理论。1898—1899年间希尔伯特提出一个著名的猜想:希尔伯特类域猜想,1907年富特文格勒证明了这个猜想。韦伯对推广希尔伯特类域做了大量工作,例如,推广了理想类群的概念,得到一些全新的结果。1920年,高木贞治应用韦伯的理想类群概念,推广了希尔伯特的结果,建立了完整的类域论。现在类域论已发展成为极其重要的、成果甚丰的数学领域。
代数数论的一大特点是,不仅由它可解决一系列整数规律问题,而且它的成果几乎可以用到每一个数学领域中。
人物简介
伽罗瓦是法国数学家。生于布拉伦,卒于巴黎。幼时受到良好的家庭教育。1827年开始自学勒让德、拉格朗日、高斯和柯西等人的论著。不久遇到数学教师里夏尔。里夏尔很快发现了伽罗瓦的数学才能,在他的指导下,伽罗瓦开始了数学研究。1828—1830年,他得到许多后来称为伽罗瓦理论的重要结果。1830年进入高等师范学校学习,由于参加政治斗争被学校除名,并两次入狱。1832年5月,由于政治和爱情的纠葛,他在一次决斗中被打死。伽罗瓦是近世代数的创始人之一。他深入研究了一个方程能用根式求解所必须满足的本质条件,建立了方程的根的“容许”置换。这些置换通过添加方程的根的域构成了自同构群。他得到了代数方程能用根式求解的充分必要条件是自同构群可解。他提出的“伽罗瓦域”、“伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题。他的工作是19世纪数学中最杰出的成就之一。但是伽罗瓦生前并未获得应有的荣誉。他在1829—1831年三次投到巴黎科学院的论文均被遗失或退回。在决斗前夕,他给朋友谢瓦利埃写了一封信,请求他把论文公诸于世,但没引起人们的注意。直到1846年,伽罗瓦的附有刘维尔注释的手稿才公开发表。1870年,若尔当在其著作《置换与代数方程论》中对伽罗瓦理论作了长篇论述。从此,伽罗瓦的工作才被完全理解。伽罗瓦理论对近代数学的发展产生了广泛而深远的影响。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市