分形

几何学术语

分形,具有以非整数维形式充填空间的形态特征。通常被定义为“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状”,即具有自相似的性质。分形(Fractal)一词,是芒德勃罗创造出来的,其原意具有不规则、支离破碎等意义。1973年,芒德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形的设想。

简介
“谁不知道熵概念就不能被认为是科学上的文化人,将来谁不知道分形概念,也不能称为有知识。”——物理学家惠勒
分形理论是在上世纪70年代由芒德布罗几乎集一己之力创立的,但其严格的数学基础之一——芒德布罗集,却是70年代末芒德布罗及布鲁克斯、马蒂尔斯基以及道阿迪、哈伯德、沙斯顿等人几乎同时分别建立完善的,他们的思想都源自上世纪前叶一些前辈如法图、莱维、朱利亚的有关思想。
中文文献中芒德布罗的译名一直不统一,芒德布罗本人使用的中文名字是“本华·曼德博”,可见于其耶鲁大学网站个人主页照片,为竖排繁体汉字手写体全国科学技术名词审定委员会在数学、物理学、力学等几个学科术语的译名中,使用的都是“芒德布罗”。本华·曼德博(1924-2010,法语原文Benoît B. Mandelbrot),生于波兰立陶宛犹太家庭,主要成长教育经历是在法国完成的,后长期在美国工作。如果追求音译的准确,还应考虑Mandelbrot姓氏最初的来源,这是一个明显地具有阿什肯那兹犹太姓氏特征的姓(德语“杏仁”+“面包”)。
分形现已成为应用极为广泛的学科。芒德布罗个人风格独特,对各类看似“无定形”、“不光滑”的“怪东西”皆富有兴趣,也正是这样他才能最终抽象创立出分形这门学科。曼德布罗特来访过中国大陆一次以上,称中国文字个个是图形,与他路数相合(芒德布罗本人习用法语)。中国最早使用分形理论的可能是金属学界。
现今人们熟悉的分形的著名实例,如用“镂空”办法制成的康托尔集谢尔宾斯基三角形(Waclaw Sierpinski,1882-1969,波兰数学家)及门格奶酪或称门格海绵(Menger,1902-1985,为著名经济学家门格之子),它们的非整数维数是渐增的,分别为0.63、1.58、2.72,而它们长度、面积、体积令人吃惊的皆为0。另一个用“凸起”办法制作的科赫曲线(H.von Koch,1870-1924,瑞典数学家),其维数是1.26,它的长度则是无限的,可它围住的面积却有限。
分形作为一种数学工具,现已应用于各个领域,如应用于计算机辅助使用的各种分析软件中。
由来
据芒德布罗教授自己说,fractal一词是1975年夏天的一个寂静夜晚,他在冥思苦想之余偶翻他儿子的拉丁文字典时,突然想到的。此词源于拉丁文形容词fractus,对应的拉丁文动词是frangere(“破碎”、“产生无规碎片”)。此外与英文的fraction(“碎片”、“分数”)及fragment(“碎片”)具有相同的词根。在70年代中期以前,芒德布罗一直使用英文fractional一词来表示他的分形思想。因此,取拉丁词之头,撷英文之尾的fractal,本意是不规则的、破碎的、分数的。芒德布罗是想用此词来描述自然界中传统欧几里德几何学所不能描述的一大类复杂无规的几何对象。例如,弯弯曲曲的海岸线、起伏不平的山脉,粗糙不堪的断面,变幻无常的浮云,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星等。它们的特点都是,极不规则或极不光滑。直观而粗略地说,这些对象都是分形。
探讨
几何学
分形几何与传统几何相比有什么特点:
⑴从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。
⑵在不同尺度上,图形的规则性又是相同的。上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。其中一些是用来描述一般随机现象的,还有一些是用来描述混沌和非线性系统的。
什么是分维
欧氏空间中,人们习惯把空间看成三维的,平面看成二维,而把直线或曲线看成一维。也可以稍加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。
分维的概念可以从两方面建立起来:一方面,首先画一个线段、正方形立方体,它们的边长都是1。将它们的边长二等分,此时,原图的线度缩小为原来的1/2,而将原图等分为若干个相似的图形。其线段、正方形、立方体分别被等分为2^1、2^2和2^3个相似的子图形,其中的指数1、2、3,正好等于与图形相应的经验维数。一般说来,如果某图形是由把原图缩小为1/a的相似的b个图形所组成,有:
a^D=b,D=(ln b)/(ln a)
的关系成立,则指数D称为相似性维数,D可以是整数,也可以是分数。另一方面,当画一根直线,如果用0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果用一块平面来量它,其结果是0,因为直线中不包含平面。只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为1(大于0、小于2)。与此类似,如果画一个Koch曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是0(此曲线中不包含平面),那么只有找一个与Koch曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于1、小于2,那么只能是小数(即分数)了,所以存在分维。Koch曲线的每一部分都由4个跟它自身比例为1:3的
形状相同的小曲线组成,那么它的豪斯多夫维数(分维数)为d=log(4)/log(3)=1.26185950714...
概况
定义
芒德布罗曾经为分形下过两个定义:
(1)满足下式条件
Dim(A)>dim(A)
的集合A,称为分形集。其中,Dim(A)为集合A的Hausdoff维数(或分维数),dim(A)为其拓扑维数。一般说来,Dim(A)不是整数,而是分数。
(2)部分与整体以某种形式相似的形,称为分形。
然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。实际上,对于什么是分形,到当下为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特性来加以说明。对分形的定义也可同样的处理。
分形一般有以下特质:
在任意小的尺度上都能有精细的结构; 太不规则,以至难以用传统欧氏几何的语言描述; (至少是大略或任意地)自相似豪斯多夫维数会大於拓扑维数(但在空间填充曲线如希尔伯特曲线中为例外); 有著简单的递归定义
(i)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。
(ii)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。
(iii)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。
(iv)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。
(v)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。
意义
上世纪80年代初开始的“分形热”经久不息。分形作为一种新的概念和方法,正在许多领域开展应用探索。美国物理学大师约翰·惠勒说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。由此可见分形的重要性。
中国著名学者周海中教授认为:分形几何不仅展示了数学之美,也揭示了世界的本质,还改变了人们理解自然奥秘的方式;可以说分形几何是真正描述大自然的几何学,对它的研究也极大地拓展了人类的认知疆域。
分形几何学作为当今世界十分风靡和活跃的新理论、新学科,它的出现,使人们重新审视这个世界:世界是非线性的,分形无处不在。分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义。
历史背景
在传统的几何学中,人们研究一个几何对象,总是习惯于在欧几里得空间(Rn,Euclidean)对其研究和度量,其中字母n表示空间的维数,通常为整数,如n分别为1、2、3时,对应的空间为线性空间、平面空间、立体空间,在相应的空间中,可以测得几何对象的长度、面积、体积等。但是大约在1个世纪前,在数学领域,相继出现了一些被称为数学怪物(mathematical monsters)的东西,在传统的Euclid领域,人们无法用几何语言去表述其整体或局部性质,其中,比较著名的
数学怪物包括:
科赫曲线此曲线在一维下测量任意段长度为无穷大(想象中,考虑到能测量原子的维度);在二维下测量面积为零
这些数学怪物困扰数学家许多年,直至20世纪,被美国数学家Benoit B. Mandelbrot创立的分形几何学(fractal geometry)彻底解决。Mandelbrot提出:之所以无法用几何语言去描述这些数学怪物,是因为在维数为整数的空间中,用维数同样是整数的“尺子”对其丈量、描述;而维数不应该仅仅是整数,可以是任何一个正实数;只有在几何对象对应的维数空间中,才能对该几何体进行合理的整体或局部描述。以上图的Koch曲线为例,其维数约为1.26,应用同样为1.26维的尺子对其进行描述,比如取该曲线前1/4段作为单位为1的尺子去丈量这个几何体,此几何体长度为4。也正是因其维数介于1维与2维之间,所以此几何体在1维下长度为无穷大,2维下面积为零。
Fractal这个词是由Mandelbrot于1975创造的,来源于拉丁文“Fractus”,其英文意思是broken,即为“不规则、支离破碎”的物体。1967年,Mandelbrot在美国《Science》杂志上发表题目为《英国的海岸线有多长》的划时代论文,标志着其分形思想萌芽的出现。1977年,Mandelbrot在巴黎出版的法文著作《Les objets fractals:forme,hasard et dimension》,1977年,在美国出版其英文版《Fractals:From,Chance,and Dimension》(《分形:形状机遇和维数》),同年,他又出版了《The Fractal Geometry of Nature》(《大自然的分形几何》),但是这三本书还未对社会和学术界造成太大的影响。直到1982年,《The Fractal Geometry of Nature》(《大自然的分形几何》)第二版才得到欧美社会的广泛关注,并迅速形成了“分形热”,此书也被分形学界视为分形“圣经”。
发展史
分形学发展史上的重要里程碑
1883年 Cantor集合被创造
1895年 Weierstrass曲线被创造,此曲线特点是“处处连续,点点不可微”
1906年 Koch曲线被创造
1914年 Sierpinski三角形被创造
1919年 描述复杂几何体的Hausdorff维问世
1951年 英国水文学家Hurst通过多年研究尼罗河,总结出Hurst定律
1967年 Mandelbrot在《Science》杂志上发表论文《英国的海岸线有多长》
1975年 Mandelbrot创造“Fractals”一词
1975年 Mandelbrot在巴黎出版的法文著作《Les objets fractals:forme,hasard et dimension》
1977年 Mandelbrot在美国出版英文著作《Fractals:Form,Chance,and Dimension》以及《The Fractal Geometry of Nature》
1982年 《The Fractal Geometry of Nature》第二版,并引发“分形热”
1991年 英国的Pergman出版社创办《Chaos,Soliton and Fractal》杂志
1993年 新加坡世界科学出版社创办《Fractal》杂志
1998年 在马耳他(Malta)的瓦莱塔(Valletta)召开了“分形98年会议”(5th International Multidisciplinary Conference)
2003年 在德国的Friedrichroda召开了“第三届分形几何和推测学国际会议”
2004年 在加拿大(Canada)的温哥华(Vancouver)召开了“分形2004年会议”(8th International Multidisciplinary Conference)
种类
逃逸时间系统:复迭代的收敛限界。例如:Mandelbrot集合Julia集合、Burning Ship分形
迭代函数系统:这些形状一般可以用简单的几何“替换”来实现。例如:康托集合、Koch雪花、谢尔宾斯基三角形、Peano曲线等等。
吸引子:点在迭代的作用下得到的结构。一般可以用微分方程确立。例如:Lorenz吸引子。
应用
科学与艺术的美妙结合——分形艺术
分形诞生在以多种概念和方法相互冲击和融合为特征的当代。分形混沌之旋风,横扫数学、理化、生物、大气、海洋以至社会学科,在音乐、美术间也产生了一定的影响。
分形所呈现的无穷玄机和美感引发人们去探索。即使不懂得其中深奥的数学哲理,也会为之感动。
分形使人们觉悟到科学与艺术的融合,数学与艺术审美上的统一,使从前枯燥的数学不再仅仅是抽象的哲理,而是具体的感受;不再仅仅是揭示一类存在,而是一种艺术创作,分形搭起了科学与艺术的桥梁。
“分形艺术”与普通“电脑绘画”不同。普通的“电脑绘画”概念是用电脑为工具从事美术创作,创作者要有很深的美术功底。而“分形艺术”是纯数学产物,创作者要有很深的数学功底,此外还要有熟练的编程技能。
苑玉峰老师认为分形图像有如下用途:
1、制作成各种尺寸的装饰画(用卡纸装裱,可获得很好的装饰画效果)。
2、用作包装材料图案,效果新颖。
3、可以制作成各种尺寸的分形挂历、台历、贺卡等。
4、应用于印染行业。
5、装点科技馆少年宫、旅游景点等。
刘华杰博士认为:
1、将高精度分形图形具体应用在建筑设计中,可以考虑将整面墙壁用一幅分形图装饰。
2、研究分形建筑陶瓷纹样、分形纺织纹样设计及其印染工艺。
3、设计分形时装。
4、将分形图形用于信息加密防伪。
5、印制分形贺卡、明信片和小台历
软件
Ultra Fractal
Visions of Chaos
Fraciant
Incendia
Mandelbulb 3D
Jwildfire
MathStudio(手机软件)
案例
罗马花椰菜
罗马花椰菜(RomanescoBroccoli)一小簇是整个花簇的一个分支,而在不同尺度下它们具有自相似的外形。换句话说,较小的分支通过放大适当的比例后可以得到一个与整体几乎完全一致的花簇。因此可以说罗马花椰菜花簇是一个分形的实例。
传统医学
最古老的朴素分形集(几千年历史,最简单的分形集阴阳集),1999年,邓宇等。
自相似性看,可追溯到古老的宗教和中医<<黄帝内经>>等典籍.
阴阳集,分维D=1
五行集,分维D=1.4650
阴阳五行-脏腑(藏象:五脏五腑)的分维D=2.0959.
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市