结构动力学

结构力学分支

结构动力学是研究结构在动力荷载作用下的振动问题的力学分支。在动力荷载作用下,其一要考虑惯性力影响,其二考虑位移、内力、速度、加速度均随时间变化而变化。

简介
结构动力学研究在动态荷载作用下的结构内力和位移的计算理论及方法。与结构静力计算相比,结构承受周期荷载、冲击荷载、随机荷载等动力荷载作用时,结构的平衡方程中必须考虑惯性力的作用,有时还要考虑阻尼力的作用,且平衡方程是瞬时的,荷载、内力、位移等均是时间的函数。
在结构动力计算中要考虑惯性力、阻尼力的作用,故必须研究结构的质量在运动过程中的自由度。动力自由度是指结构运动过程中任一时刻确定全部质量的位置所需的独立几何参数的数目。
静力计算考虑的是结构的静力平衡,荷载、约束力、位移等都是不随时间变化的常量。动力问题与静力问题相比较,在结构动力计算中,需要考虑惯性力,荷载是时间的函数,需要考虑惯性力。在动力问题中,根据达朗贝尔原理,建立包含惯性力的动力平衡方程,这样就把动力学问题化成瞬间的静力学问题.运用静力学方法计算结构的内力和位移。与静力平衡方程不同,动力平衡微分方程的解(即动力反应)是随时间变化的,因而动力分析比静力分析更加复杂。
研究内容
结构动力学的研究内容包括实验研究和理论分析两个方面。
实验研究
在18~19世纪,大量的实验研究不仅为理论分析奠定了基础,而且成为当时解决实际工程问题的主要手段。例如,19世纪对桥梁和路轨在移动载荷作用下的响应所作的实验,曾对铁路运输工程的发展作出重要贡献。即使在理论分析已较为完善的今天,实验仍不可缺少。20世纪60年代,美国在研制土星V运载火箭时就不惜耗费50万美元,制作一个1/10的动力相似模型,以测定其动力特性。至于材料和结构阻尼特性的测定、振动环境试验等工作,则主要依靠实验研究。
结构动力学实验中有以下几个课题:①材料性能的测定:包括测定动态应力-应变曲线、冲击载荷作用下的极限强度(见材料的力学性能)、重复载荷作用下的疲劳强度(见疲劳)、材料或结构的阻尼特性等;②结构动力相似模型的研究:包括各种情况下的动力相似条件、相似模型的设计和制作等;③结构固有(自由)振动参量的测定:对结构或其相似模型施加一定方式的激励,如频率可调的简谐力、冲击力或随机力,然后根据响应确定结构的固有频率、振动形态(振型)以及振型阻尼系数等参量;④振动环境试验:在现场或在能模拟振动环境的试验台上对结构或其相似模型进行振动试验,用以确定结构的工作可靠性或使用寿命;⑤其他专业性试验。
理论分析
结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。
(1)教学模型
将结构离散化的方法主要有以下三种:①集聚质量法:把结构的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由度。对于大部分质量集中在若干离散点上的结构,这种方法特别有效。②瑞利-里兹法(即广义位移法):假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi(它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为:
式中的qj称为广义坐标,它表示相应位移函数的幅值。这样,离散系统的运动方程就以广义坐标作为自由度。对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。通常取单元边界上(有时也包括单元内部)若干个几何特征点(例如三角形的顶点、边中点等)处的广义位移qj作为广义坐标,并对每个广义坐标取相应的插值函数作为单元内部的位移函数(或称形状函数)。在这样的数学模型中,要求形状函数的组合在相邻单元的公共边界上满足位移连续条件。一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的方法,已有不少专用的或通用的程序可供结构动力学分析之用。
(2)载荷确定
载荷有三个因素,即大小,方向和作用点。如果这些因素随时同缓慢变化,则在求解结构的响应时,可把载荷作为静载荷处理以简化计算。载荷的变化或结构的振动是否“缓慢”,只是一个相对的概念。如果载荷的变化周期在结构自由振动周期的五、六倍以上,把它当作静载荷将不会带来多少误差。若载荷的变化周期接近于结构的自由振动周期,即使载荷很小,结构也会因共振(见线性振动)而产生很大的响应,因而必须用结构动力学的方法加以分析。
动载荷按其随时间的变化规律可以分为:①周期性载荷,其特点是在多次循环中载荷相继呈现相同的时间历程,如旋转机械装置因质量不平衡而引起的离心力。周期性载荷可借助傅里叶分析分解成一系列简谐分量之和。②冲击载荷,其特点是载荷的大小在极短的时间内有较大的变化。冲击波或爆炸是冲击载荷的典型来源。③随机载荷,其时间历程不能用确定的时间函数而只能用统计信息描述。由大气湍流引起的作用在飞行器上的气动载荷和由地震波引起的作用在结构物上的载荷均属此类。对于随机载荷,需要根据大量的统计资料制定出相应的载荷时间历程(载荷谱)。对于前两种载荷,可以从运动方程解出位移的时间历程并进一步求出应力的时间历程。对于随机载荷,只能求出位移响应的统计信息而不能得到确定的时间历程,因而须作专门分析才能求出应力响应的统计信息。
在结构动力学分析中,动载荷的确定是一项重要而困难的工作。近年来发展的“载荷识别”是一项新技术,它根据结构在实标工作情况下测得的响应资料反推结构所受到的载荷资料。
(3)运动方程
可用三种等价但形式不同的方法建立,即:①利用达朗伯原理引进惯性力,根据作用在体系或其微元体上全部力的平衡条件直接写出运动方程;②利用广义坐标写出系统的动能、势能、阻尼耗散函数及广义力表达式,根据哈密顿原理或其等价形式的拉格朗日方程导出以广义坐标表示的运动方程;③根据作用在体系上全部力在虚位移上所作虚功总和为零的条件,即根据虚功原理导出以广义坐标表示的运动方程。对于复杂系统,应用最广的是第二种方法。
通常,结构的运动方程是一个二阶常微分方程组,写成矩阵形式为:
式中q(t)为广义坐标矢量,是时间t的函数,其上的点表示对时间的导数;M、D、K分别为对应于q(t)的结构质量矩阵、阻尼矩阵和刚度矩阵,Q(t)是广义力矢量。
(4)方程解法
运动方程(2)可用振型叠加法或逐步积分法求解。
①振型叠加法 先求出结构作自由振动时的固有频率和振型,然后利用求得的振型作为广义位移函数再对运动方程作—次坐标变换,进而求出方程的解。
一个n个自由度的结构具有n个固有频率ωj和n个振型φj(j=1,2,…,n)。φj规定了n个广义坐标qi(i=1,2,…,n)在第j个振型中的相对大小。振型满足下列关系式:
式中上标“T”为矩阵转置符号;Mj为第j个振型的广义质量。i≠j时的关系式称为振型的正交条件。正交条件在物理上意味着不同的振型之间不存在能量交换,即结构在作自曲振动时各个振型都是独立进行的。振型叠加法可以有条件地用于有阻尼的情况。若结构的阻尼矩阵可表为:
D=αK+βM, (4)
式中α和β是常数,则称之为比例阻尼矩阵。对应的振型满足
式中ξj称为第j个振型的阻尼系数。同时,有阻尼的自振频率将改变为
条件(4)还可放宽为,式中为M的逆矩阵。
通过振型及相应的广义坐标Yj(t),可将方程(2)中的广义坐标矢量q(t)表示为:
代入方程(2),并左乘以,利用正交条件(3)和(5),可将方程(2)转化为:
式中Pj(t)=φj-Q(t)是对应于第j个振型的广义力。方程(7)可以通过时域分析法频域分析法求解。时域分析法是利用卷积积分给出方程(7)的解,可用于任意变化的载荷情况。频域分析法是利用傅里叶分析把周期性载荷展开为一系列简谐分量之和,然后计算结构对每一简谐分量的响应,最后叠加各简谐响应项而获得结构的总响应。这种方法适用于周期性载荷情况。对于非周期性载荷,也可以利用傅里叶变换技术。1965年出现了快速傅里叶变换——一种用计算机计算离散傅里叶变换的方法,它在效率和功能方面的优点,使得频域分析方法能和传统的时域分析方法相媲美,并正在引起结构动力学领域的变革。
由于运动方程(7)可以逐个独立地求解,使得振型叠加法具有很大的优越性,因而它已成为结构动力学中一个应用最广泛的分析方法。对于大多数类型的动载荷,各个振型的响应是不同的,一般是频率最低的振型响应最大,高频振型的响应则趋向减小,因而在叠加过程中只需要计及频率较低的若干项,若得到的响应已达到精度要求,就可舍弃频率较高的各项,从而可以大大减少计算工作量。振型叠加法只适用于线性振动问题。
②逐步积分法 可用于直接求解耦合的运动方程(2),而且对阻尼矩阵的性质不需要附加任何限制,也适用于使振型叠加法失效的非线性结构系统的动力分析,因此是一种普遍适用的方法。该法是把时间划分为一系列很短的时段,按照初始条件确定初始时刻的广义位移q和广义速度,通过运动方程(2)解出广义加速度,然后可设在这一时段内为常量,通过积分求出在这一时段结束时刻的q和值,并以它们作为下一时段的初始值,如此一步一步求解下去,就能得到最终的结果。如果结构是非线性系统,同样可假设结构参量(如刚度)在每一时段内是常量并取为该时段开始时刻的瞬时参量值。逐步积分法是一种近似的方法,为了减小积累误差,必须把时段取得非常短,因而其计算工作量很大。为了提高效率,可以假设加速度在每一时段内为线性函数(或其他简单函数)。这样,即使取时段(即积分步长)为运动周期的十分之一甚至五分之一也可以得到合理的结果。
发展情况
简要概述
早在18世纪后半叶,瑞士的丹尼尔第一·伯努利(见伯努利家族)首先研究了棱柱杆侧向振动的微分方程。瑞士的L.欧拉求解了这个方程并建立了计算棱柱杆侧向振动的固有频率的公式。1877~1878年间,英国的瑞利发表了两卷《声学理论》,书中具体地讨论了诸如杆、梁、轴、板等弹性体的振动理论,并提出了著名的瑞利方法(或称瑞利原理)。1908年瑞士的w.里兹提出了一个求解变分问题的近似方法,后来被称作瑞利-里兹法。这个方法实际上推广了瑞利方法,在很多学科中(包括结构动力学在内)发挥了巨大的作用。1928年,S.P.铁木辛柯发表了《工程中的振动问题》一书,总结了弹性体振动理论及其在工程中应用的情况。近几十年来,由于工程实践的需要和科学探索的兴趣,人们进行了大量的实验和理论研究工作,使这门学科在实践和理论分析上都获得了高度的发展。
新的问题
二百多年来,结构动力学已经发展成为一门比较成熟的学科。但是,结构动力学仍在探索新的问题,如:
(1)复模态理论 传统的结构动力学主要以不考虑阻尼或只考虑比例阻尼系统的振型的纯模态理论为基础,近年来在考虑任意阻尼的复模态理论研究方面已取得一定的进展。深入开展复模态理论的研究将进一步推动结构力学的理论分析方法和实验技术的发展。
(2)主动振动控制 研究结构动力学的最终目的是要控制振动,防止因振动而造成的损害,而利用其有利的特性。传统的作法是根据结构动力响应的分析结果,在必要时对结构采取相应的修改措施,这是一种被动的振动控制方式。航空界在20世纪60年代开始发展主动控制技术,即根据振动传感器所获得的结构振动信息,通过控制系统加以分析并操纵若干小型操纵面,以达到降低飞机对大气湍流的响应水平或推迟颤振发生的目的,这是一种主动的振动控制方式。振动控制由被动发展到主动,是结构动力学中一个值得注意的动向。
(3)优化设计 结构动力学中的传统作法是分析已有结构的动力特征,其逆问题——设计一个结构使其具有预定的动力特性——越来越引起了人们的重视(见结构优化设计)。
(4)跨学科和其他问题 吸收其他学科的新技术,改善现有的方法和技术以提高它们的效率和精度,并开展跨学科的研究工作。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市