蝴蝶定理

几何学术语

蝴蝶定理(Butterfly Theorem),是古代欧氏平面几何中最精彩的结果之一。这个命题最早出现于1815年,由W.G.霍纳提出证明。而“蝴蝶定理”这个名称最早出现于《美国数学月刊》1944年2月号,题目的图形像一只蝴蝶。这个定理的证法不胜枚举,仍然被数学爱好者研究,在考试中时有各种变形。

定理定义
蝴蝶定理(Butterfly Theorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。
该定理实际上是射影几何中一个定理的特殊情况,有多种推广(详见定理推广):
1. M作为圆内弦的交点是不必要的,可以移到圆外。
2. 圆可以改为任意圆锥曲线
3. 将圆变为一个筝形,M为对角线交点。
4. 去掉中点的条件,结论变为一个一般关于有向线段比例式,称为“坎迪定理”, 不为中点时满足: ,这对1, 2均成立。
平面几何证法
霍纳证法
过O作OL⊥ED,OT⊥CF,垂足为L、T,
连接ON,OM,OS,SL,ST
可知∠F=∠D;∠C=∠E(同弧所对的圆周角相等)
△ESD∽△CSF(AA)
∴DS/FS=DE/FC
根据垂径定理得:DL=DE/2,FT=FC/2
∴DS/FS=DL/FT
又∵∠D=∠F
∴△DSL∽△FST
∴∠SLD=∠STF
即∠SLN=∠STM
∵S是AB的中点所以OS⊥AB(垂径定理逆定理
∴∠OSN=∠OLN=90°
∴O,S,N,L四点共圆(对角互补的四边形共圆),
同理,O,T,M,S四点共圆
∴∠STM=∠SOM,∠SLN=∠SON(同弧所对的圆周角相等)
∴∠SON=∠SOM
∴∠OTS=∠OMS,∠OLS=∠ONS(同弧所对的圆周角相等)
∴∠OMS=∠ONS
∵OS⊥AB
∴在△OSM和△OSN
∠MSO=∠NSO
∠OMS=∠ONS
OS=OS
∴△SOM≌△SON(AAS)
∴MS=NS
作图法
从X向AM和DM作垂线,设垂足分别为X'和X''。类似地,从Y向BM和CM作垂线,设垂足分别为Y'和Y''。
(证明过程见图1)
对称法
(证明过程见图2)
面积法
(证明过程见图3)【此方法也可证明蝴蝶定理的一般形式:坎迪定理】
帕斯卡证法
连接CO、EO并延长分别交圆O于I、J,连接IF、DJ交于K,
连接GK、HK。由帕斯卡定理得:M、O、K共线
∵M为AB中点 ∴KM⊥AB∴∠GMK=∠HMK=90°
又∵CI、EJ为⊙O直径
∴∠GFK=∠HDK=90°
又∵∠GMK=∠HMK=90°
∴∠GMK+∠GFK=∠HMK+∠HDK=90°+90°=180°
∴G、F、K、M共圆,H、D、K、M共圆
∴∠GKM=∠GFM,∠MKH=∠MDH
又∵∠GFM=∠MDH
∴∠GKM=∠MKH
又∵∠GMK=∠HMK=90°
∴△GMK≡△HMK(ASA)
∴GM=MH
相似法
如图4,过H作DG的平行线,交DF于K,交GE的延长线于L。
则△GIC∽△LHC,△DIC∽△KHC
两式相乘,得~~~①
又,∠L=∠G=∠F
∵∠EHL=∠KHF
∴△EHL∽△KHF
∵AC=BC
代入上式得
又∵(相交弦定理
将上述两式全部代入①中,得
∴IC=HC
射影法
1.构造特殊情况:如图5中图1,A'B'、C'D'、M'N'为⊙O'内三条直径,A'D'∩M'N'=P',B'C'∩M'N'=Q',则由圆中心对称性知P'O'=Q'O'.
2.中心投影:在不属于⊙O'所在平面的空间上任取一点T作为投影中心,用平行于直线M'N'的平面截影,则圆O'被射影为椭圆,线段M'N'被射影为与之平行的M''N'',如图5中图2,则对应存在P''O''=Q''O''.
3.仿射:将图5中图2的椭圆仿射为圆,如图5中图3,由仿射不变性知PO=QO.
解析几何证法
利用曲线系可以证明任意圆锥曲线(包括退化情形)的蝴蝶定理。
圆锥曲线C上弦PQ的中点为M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
证明:以PQ所在直线为x轴,M为坐标原点建立直角坐标系
由于直线AB、CD经过原点M,其方程可分别设为,其中系数不全为0。则方程C1:表示这两条直线。
又设已知圆锥曲线方程C2为
那么,经过ABCD四点的曲线系C可写成:
设P(-t,0),Q(t,0),则P、Q的坐标满足方程C2,即
两个方程相减即得d=0,即C2中不含关于x的一次项。
回到曲线C中,令y=0,得C与x轴交点的横坐标x满足:
这是一个关于x的一元二次方程,因一次项系数为0,韦达定理得x1+x2=0
也就是说,曲线C与x轴的两个交点关于原点M对称。
因为弦AD、BC组成一条通过ABCD的曲线C,它和x轴交于X,Y,所以有MX=MY。
定理推广
该定理实际上是射影几何中一个定理的特殊情况,有多种推广:
1.蝴蝶定理的圆外形式
如图6,延长圆O中两条弦AB与CD交于一点M,过点M做OM垂线,垂线与CB和AD的延长线交于E、F,则可得出ME=MF(证明方法可参考蝴蝶定理的证法2、3、4)
2.在圆锥曲线中
通过射影几何,我们可以非常容易的将蝴蝶定理推广到普通的任意圆锥曲线(包括椭圆,双曲线抛物线,甚至退化到两条相交直线的情况)。
圆锥曲线C上弦PQ的中点为M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
而通过投影变换可以非常容易证明这个定理。
射影几何里面关于投影变换有一个重要结论,对于平面上任意两个圆锥曲线C1,C2.任意指定C1内部一个点A1和C1上面一个点B1,另外任意指定C2内部一个点A2和C2上面一个点B2,存在唯一一个投影变换将曲线C1变换到C2而且A1变换到A2,B1变换到B2.
由此对于本题,也可以通过投影变换将C1变换成一个圆M,而将弦PQ的中点M变换成这个圆的圆心。
在此变换以后,弦AB和CD都是圆M的直径而且四边形ACBD是圆M内接矩形,PQ也是一条直径,由对称性显然得出投影变换后M为X,Y的中点。又因为变换前后M都是线段PQ的中点,由此可以得出在直线PQ上这个变换是仿射变换,所以变换前M也是XY的中点。
例题:
如图7,椭圆的长轴A1、A2与x轴平行,短轴B1B2在y轴上,
中心为M(o,r)(b>r>0)。
(I)写出椭圆的方程,求椭圆的焦点坐标及离心率
(II)直线y=k1x交椭圆于两点C(x1,y1),D(x2,y2)(y2>0);直线y=k2x交椭圆于两点G(x3,y3),H(x4,y4)(y4>0)。求证:k1x1x2/(x1+x2)=k2x3x4/(x3+x4)
(III)对于(Ⅱ)中的C,D,G,H,设CH交X轴于点P,GD交X轴于点Q。
求证: | OP | = | OQ |。(证明过程不考虑CH或GD垂直于X轴的情形)
从x向AM和DM作垂线,设垂足分别为X'和X''。
类似地,从Y向BM和CM作垂线,设垂足分别为Y'和Y'
设:k1x1x2/(x1+x2)=k2x3x4/(x3+x4)为①式,两边同取倒数,得为
1/k1x2+1/k1x1=1/k2x4+1/k2x3 ①’
设:x1x4/(k1x1-k2x4)=-x2x3/(k1x2-k2x3)为 ②式,两边同取倒数,得k1/x4-k2/x1=k2/x2-k1/x3,移项得k2/x1+k2/x2=k1/x3+k1/x4 ②’
将①’两边同乘以k1·k2,即得
k2/x1+k2/x2=k1/x3+k1/x4
它与②’完全一样。这里利用两式同时变形的方法可以较容易实现目的,有分析、有综合,有思维,有运算。思路的选择有赖于对式子特征的观察联想。
纵观这道题的题目特征及解答过程,我们看到了用代数方程方法处理几何问题的作用与威力。
3.在筝形中
筝形ABCD中,AB=AD,BC=CD,过直线BD上一点P任作两条直线,一条与直线 AD、BC 交于E、F,另一条与直线 AB、CD 分别交于 G、H,直线 GF、EH 分别与 BD 交于 I、J。则
特别地,当点 P 为 BD 中点时,有 PI=PJ。此时本题为1990年中国中学生数学冬令营选拔考试试题,被称为筝形蝴蝶定理。
证明如图8。
4.坎迪定理
去掉中点的条件,结论变为一个一般关于向量的比例式,称为「坎迪定理」,这对2,3均成立
发展历史
这个命题最早作为一个征解问题出现于公元1815年英国的一本杂志《男士日记》(Gentleman's Diary)39-40页(P39-40)上。有意思的是,直到1972年以前,人们的证明都并非初等,且十分繁琐。
这篇文章登出的当年,英国一个自学成才的中学数学教师W.G.霍纳(他发明了多项式方程近似根的霍纳法)给出了第一个证明,完全是初等的;另一个证明由理查德·泰勒(Richard Taylor)给出。
另外一种早期的证明由M.布兰德(Mile Brand)1827年的一书中给出。最为简洁的证法是射影几何
“蝴蝶定理”这个名称最早出现于《美国数学月刊》1944年2月号,题目的图形象一只蝴蝶。
1981年,Crux杂志刊登了K.萨蒂亚纳拉亚纳(Kesirajn Satyanarayana)用解析几何的一种比较简单的方法,利用直线束二次曲线束
1990年,CMO出现了筝形蝴蝶定理。
定理意义
蝴蝶定理是古典欧式平面几何的最精彩的结果之一。这个定理的证法不胜枚举,仍然被数学热爱者研究,在考试中时有出现各种变形。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市