量子谐振子

量子力学术语

量子力学里,量子谐振子(英语:quantum harmonic oscillator)是经典谐振子的延伸。其为量子力学中数个重要的模型系统中的一者,因为一任意势在稳定平衡点附近可以用谐振子势来近似。此外,其也是少数几个存在简单解析解的量子系统。量子谐振子可用来近似描述分子振动

一维谐振子
哈密顿算符与能量本征态
在一维谐振子问题中,一个质量为m的粒子,受到一位势。此粒子的哈密顿算符
其中x为位置算符,而p为动量算符。第一项代表粒子动能,而第二项代表粒子处在其中的势能。为了要找到能阶以相对应的能量本征态,必须解所谓的“定态薛定谔方程”:
在坐标基底下可以解这个微分方程,用到幂级数方法。可以见到有一族的解:
最先六个解(n= 0到5)展示在右图1。函数为埃尔米特多项式
注意到不应将之与哈密顿算符搞混,尽管哈密顿算符也标作H。相应的能阶为
值得注意的是能谱,理由有三。首先,能量被“量子化”(quantized),而只能有离散的值——即乘以1/2, 3/2, 5/2……等等。这是许多量子力学系统的特征。在尔后的“阶梯算符”段落,将对此现象做更详细的检视。再者,可有的最低能量(当n= 0)不为零,而是,被称为“基态能量”或零点能量。在基态中,根据量子力学,一振子执行所谓的“零振动”(null oscillations)且其平均动能是正值。这样的现象意义重大但并不那么显而易见,因为通常能量的零点并非一个有意义的物理量,因为可以任意选择;有意义的是能量差。虽然如此,基态能量有许多的意涵,特别是在量子引力。最后一个理由式能阶值是等距的,不像玻尔模型盒中粒子问题那样。
注意到基态的概率密度集中在原点。这表示粒子多数时间处在势阱的底部,合乎对于一几乎不带能量之状态的预期。当能量增加时,概率密度变成集中在“经典转向点”(classical turning points),其中状态能量等同于势能。这样的结果与经典谐振子相一致;经典的描述下,粒子多数时间处在(而更有机会被发现在)转向点,因为在此处粒子速度最慢。因此满足对应原理
阶梯算符方法
前述的幂级数解虽然直观,但显得相当繁复。阶梯算符方法起自保罗·狄拉克,允许抽像求得能量本征值,而不用直接解微分方程。此外,此法很容易推广到更复杂的问题,尤其是在量子场论中。跟从此方法,定义算符a与其伴随算符(adjoint)a:
算符a并非厄米算符(Hermitian),以其与伴随算符a并不相同。
算符a与a有如下性质:
在推导a形式的过程中,已用到算符x与p(代表可观测量)为厄米算符这样的事实。这些可观测量算符可以被表示为阶梯算符的线性组合:
x与p算符遵守下面的等式,称之为正则对易关系
方程中的方括号是常用的标记机器,称为交换子、交换算符或对易算符,其定义为
利用上面关系,可以证明如下等式:
让代表带有能量E的能量本征态。任何右括矢量(ket)与自身的内积必须是非负值,因此
将aa以哈密顿算符表示:
因此。注意到当()为零右括矢量(亦即:长度为零的右括矢量),则不等式饱和而。很直观地,可以检查到存在有一状态满足此条件——前面段落所提到的基态(n= 0)。
利用上面等式,可以指出a及a与H的对易关系:
因此要是()并非零右括矢量,
类似地,也可以指出
换句话说,a作用在能量为E的本征态,而产生出——还多了一个常数乘积——另一个能量为的本征态,而a作用在能量为E的本征态,产生出另一个能量为的本征态。因为这样,a称作降算符而a称作升算符。两者合称阶梯算符。在量子场论中,a与a也分别称作消灭算符与创生算符,以其分别摧毁与创造粒子——对应于能量量子。
给定任何能量本征态,可以拿降算符a作用在其上,产生了另一个能量少了的本征态。重复使用降算符,似乎可以产生能量本征态其能量低到E= −∞。不过这样就就与早先的要求相违背。因此,必须有一最底的能量本征态——基态,标示作(勿与零右括矢量混淆),使得(即a对作用后产生零右括矢量(zero ket))。
在这情况下,继续使用降算符只会产生零右括矢量,而不是产生额外的能量本征态。此外,还指出了
最后,透过将升算符作用在上,并且乘上适当的归一化因子,可以产生出一个能量本征态的无限集合使得这与前段所给的谱相符合。
这方法也能够用来很快地找到量子谐振子的基态波函数。只要将消灭算符作用于基态,变为
所以
这个方程的解为,经过归一化,
自然长度与能量尺度
量子谐振子拥有自然长度与自然能量两个自然尺度,可以用来简化问题。这可以透过无量纲化来得到。结果是如果以为单位来测量能量,以及为单位来测量距离,则薛定谔方程变成:
且能量本征态与本征值变成
为了避免混淆,在此文中不采用这些自然单位。不过,这用法在执行运算上总会因便利性而迟早被使用。
案例:双原子分子
主条目:双原子分子
在双原子分子中,自然频率可以发现为:
其中为角频率,k是共价键劲度系数,是约化质量
N维谐振子
一维谐振子很容易地推广到N维。在一维中,粒子的位置是由单一坐标x来指定的。在N维中,这由N个位置坐标所取代,以标示。对应每个位置坐标有个动量,标示为p1, ...,pN。这些算符之间的正则对易关系
系统的哈密顿算符
从这个哈密顿量的形式,可以发觉,N维谐振子明确地可比拟为N个质量相同,弹性常数相同,独立的一维谐振子。在这案例里,变数是N个粒子的位置坐标。这是反平方连心位势的一个优良的特性,允许位势被分离为N个项目,每一个项目只跟一个位置坐标有关。
这观察使得问题的解答变的相当简单。对于一个集合的量子数,一个N维谐振子的能量本征函数等于N个一维本征函数的乘积:
采用阶梯算符方法,定义N组阶梯算符
类似前面所述的一维谐振子案例,可以证明每一个与算符将能量分别降低或升高。哈密顿量是
这量子系统的能阶E是
其中,正整数是的量子数。
如同一维案例,能量是量子化的。N维基态能阶是一维基态能阶的N倍。只有一点不同,在一维案例里,每一个能阶对应于一个单独的量子态。在N维案例里,除了底态能阶以外,每一个能阶都是简并的,都对应于多个量子态。
简并度可以很容易地计算出来。例如,思考三维案例,设定。每一个N相同的量子态,都会拥有相同的能量。给予N,首先选择一个。那么,,有个值,从0到,可以选择为的值。的值自动的设定为。因此,简并度是
对于N维案例,
耦合谐振子
设想N个相同质量的质点,以弹簧连结为一条一维的线形链条。标记每一个质点的离开其平衡点的位置为(也就是说,假若一个质点k位于其平衡点,则)。整个系统的哈密顿量是
其中,。
很奇妙地,这个问题可以用坐标变换来变换成一组独立的谐振子,每一个独立的谐振子对应于一个独特的晶格集体波震动。这些波震动表现出类似粒子般的性质,称为声子。许多固体的离子晶格都会产生声子。在固体物理学里,这方面的理论对于许多现象的研究与了解是非常重要的。
参阅
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市