有理簇

数学术语

概形是代数几何的基本研究对象。它实际上就是一个局部同构于仿射概形的局部环空间。代数簇是代数几何的另一个基本研究对象。设k是一个域,域k上的代数簇就是一个整的、分离、有限型k概形。而有理簇(rational variety)是双有理等价于代数闭域上的射影空间的代数簇。它当然是最简单的代数簇。它可以等价地定义为代数闭域k上的代数簇X,X的有理函数域k(X)同构于域k的有限生成纯超越扩张

代数几何
研究多项式方程组在仿射或射影空间里的公共零点集合的几何特性的数学分支学科。换言之,它是研究代数簇的。代数几何与许多其他数学分支有着密切的联系。通常假设代数簇V中点的坐标在某个固定域k中选取,k称为V的基域。V为不可约(即V不能分解成两个比它小的闭代数子簇的并)时,V上所有有理函数(即两个多项式的商)全体也构成一个域,称为V的有理函数域,它是k的一个有限生成扩域。通过这样的一个对应关系,代数几何可以看成是用几何的语言和观点来研究有限生成扩域。
代数几何的基本问题就是代数簇的分类。包括双有理分类与双正则分类(即同构分类)。若一个代数簇V1到另一个代数簇V2的映射诱导了函数域之间的同构,则称该映射为双有理映射。设有两个代数簇V1,V2,若V1中有一个稠密开集同构于V2的一个稠密开集,则称V1,V2是双有理等价的。这等价于V1和V2的函数域之间的同构.按这个等价关系对代数簇进行分类就称为双有理分类。分类理论是这样建立的:首先,找出代数簇的双有理等价类;其次,在这个等价类中找到一个好对象的子集,如非奇异射影簇,对它们进行分类;第三步就是确定一个任意簇与这些好的对象相差多远。因为任意特征0的基域上的代数簇都双有理等价于一个非奇异射影簇,所以为实现这三步,人们往往先找一组与非奇异射影簇对应的整数,称为它的数值不变量。例如,在射影簇的情形,它的各阶上同调空间的维数就都是数值不变量。然后试图在所有具有相同的数值不变量的代数簇的集合上建立一个自然的代数结构,称为它们的参量簇,使得当参量簇中的点在某个代数结构中变化时,对应的代数簇也在相应的代数结构中变化.目前,只有代数曲线、一部分代数曲面以及少数特殊的高维代数簇有较完整的分类。
20世纪初期,由于抽象代数方法的引入,抽象域上的代数几何理论建立起来了。特别是在20世纪50年代,塞尔(Serre,J.P.)把代数簇的理论建立在层的概念上,并建立了凝聚层的上同调理论,这为格罗腾迪克(Grothendieck,A.)随后建立概形理论奠定了基础.概形理论的建立使代数几何的研究进入了一个全新的阶段。概形的概念是代数簇的推广。粗浅地,它允许点的坐标在任意有单位元的交换环中选取,并允许结构层中有幂零元。概形理论把代数几何和代数数域的算术统一到了一个共同的语言之下,这使得在代数数论的研究中可以应用代数几何中大量的概念、方法和结果。
20世纪以来,复数域上代数几何中的超越方法也有重大的进展,例如,德·拉姆(de Rham,G.-W.)的解析上同调理论,霍奇(Hodge,W.V.D.)的调和积分理论的应用,小平邦彦斯潘塞(Spencer,D.C.)的变形理论以及格里菲思(Griffiths,P.)的一些重要工作。这使得代数几何的研究可以应用偏微分方程微分几何、拓扑学等理论。
概形
概形是代数几何的基本研究对象。它实际上就是一个局部同构于仿射概形的局部环空间。更精确地,概形(X,OX)是一个环空间,其拓扑空间X有一个开覆盖{Xi}i∈I,使得(Xi,OX|Xi)同构于仿射概形Spec Γ(Xi,OX)(这样的覆盖称为仿射开覆盖)。概形间的态射就是局部环空间的态射。概形的范畴是局部环空间范畴的子范畴。若概形X有一个仿射开覆盖{Xi},使得每个仿射概形都是诺特概形既约概形正规概形正则概形,则相应地称概形X是局部诺特的、既约的、正规的或正则的。这些性质都是概形的局部性质,就是说,只要存在一个仿射开覆盖具有上述某种性质,这个概形就具有此性质,而且任意一个仿射开子概形都有此性质。若概形X的拓扑空间是连通空间或不可约空间(即它不能表成两个不同真闭子集的并),则称此概形为连通的或不可约的。
在研究概形的性质或有关的概念时,往往要考虑具有相同基础的概形。带有态射f:X→S的概形X称为S概形.若S=Spec A是仿射概形,则S概形简称A概形。显然任何概形都是Z概形。给出基变换态射S′→S后,可以得到一个S′概形XS′=X×SS′,称为S概形X的基扩张。与S概形相关的概念称为相对概念,以区别于与概形相关的绝对概念。S概形与态射f:X→S密切相关。不同性质的态射就给出了不同的S概形。例如,设f:X→S是一个态射,若对角浸入X→X×SX是闭态射,则称f是分离态射;若存在S的一个仿射开覆盖{Ui}={Spec Bi},使得每个f(Ui)都有一个有限仿射开覆盖{Vij}={Spec Aij},并且Aij都是有限生成Bi代数,则称f是有限型的;若f(Ui)=Spec Ai,Ai都是有限生成Bi模,则称f是有限态射。有限态射是仿射态射。代数几何中研究的S概形一般都是分离、有限型的。
代数簇
代数簇是代数几何的另一个基本研究对象。设k是一个域,域k上的代数簇就是一个整的、分离、有限型k概形。这里的基域k往往被取作代数闭域。若一个代数簇又是射影、拟射影、仿射或正常k概形,则把这个代数簇相应地称为射影、拟射影、仿射、完备(代数)簇。射影簇必定是完备簇,反之则不然。永田定理断言:对任意的代数簇X,必存在一个完备簇,使得X→是开浸入。代数簇的概念最早是在20世纪20年代由范·德·瓦尔登(Van der Waerden,B.L.)和诺特(Noether,E.)等提出的,以后又经过韦伊(Weil,A.)、塞尔(Serre,J.P.)等人的发展,直至格罗腾迪克(Grothendieck,A.)把它纳入概形体系,才得到上述的现代定义。
设S是一个概型,φ是概型X到S的态射,则称X是一个S-概型,如果S=SpecR,则称X是一个R-概型。设f是概型X到Y的态射,如果△X/Y: X→XxYX,x→(x,x)是闭的浸入,则称X在Y上可分,若Y=SpecR,则称X是可分的。态射f:X→Y称为有限型的,如果存在Y的仿射开覆盖{Yλ|λ∈∧} 使得每个Xλ=f(Yλ) 可以被有限个仿射开子集覆盖,而Xλj=SpecBλj,Yλ=SpecAλ每个Bλj是有限生成的Aλ代数。若X→SpecR是有限型的,则称X是R-代数的。设k是一个代数闭域,V是一个整的,可分的在k上代数的k-概型,则我们称V是k上的一个代数簇。设(X,φ),(Y,φ)是S-概型,f: X→Y是态射,如果→f=φ,则称f是S-态射。设X,Y是R-概型,令E={ (U,φ)|U是X的稠密开子集,φ:U→Y是R-态射},在E上引入等价关系 (U,φ)~ (V,φ) 当且仅当对于U∩V的某个稠密开子集W,|w=Φ|W。E/~的元素称为有理映射,若Y=SpecR[X],则称为有理函数,X上所有有理函数的集合记作RatR(X)。若V是域k上的代数簇,则RatR(V)称为V的函数域。设f是X到Y的有理映射,如果存在(U,φ)∈f,使得φ(U)是Y的稠密子集,则称f是控制的。设V,W是代数簇,f:V→W是控制的有理映射,如果存在有理映射g:W→V使得g◦f是恒等映射,则称f是双有理映射。V到V的所有双有理映射作成一个群,称为V的双有理同构群。如果有V到W的双有理映射,则称V与W双有理等价。一维的代数簇称为曲线,二维的代数簇称为曲面。曲面S上的曲线C是曲面S的一维闭子簇。
有理簇
有理簇(rational variety)是双有理等价于代数闭域上的射影空间的代数簇。它当然是最简单的代数簇。它可以等价地定义为代数闭域k上的代数簇X,X的有理函数域k(X)同构于域k的有限生成纯超越扩张。完备光滑有理簇的小平维数必为-∞,但反之不对。亏格等于0(即小平维数是-∞)的完备光滑曲线一定是有理曲线。当X是完备光滑曲面时,X是有理曲面的充分必要条件是χ(OX)=1,P2(X)=0。但是,对于维数超过2的情形,尚无一般的判别法则。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市