酉群

群论学术语

在数学中,n 阶酉群(unitary group)是 n×n酉矩阵组成的群,群乘法是矩阵乘法。酉群记作 U(n),是一般线性群 GL(n, C) 的一个子群。 在最简单情形 n = 1,群 U(1) 相当于圆群,由所有绝对值为 1 的复数在乘法下组成的群。所有酉群都包含一个这样的子群。 酉群 U(n) 是一个 n2 维实李群。U(n) 的李代数由所有复 n× n斜埃尔米特矩阵组成,李括号为交换子。 一般酉群(也称为酉相似群)由所有复矩阵 A 使得 A * A 是恒同矩阵非零复数倍,这就是酉群与恒同矩阵的正数倍的乘积。

性质
因为酉矩阵的行列式长 1 的复数,行列式给出了一个群同态
这个同态的核是行列式为单位的酉矩阵集合,这个子群称为特殊酉群,记作 SU(n)。我们有李群的短正合列
这个短正合列分裂,故 U(n) 可以写成 SU(n) 与 U(1) 的半直积。这里 U(1) 是 U(n) 中由形式的矩阵组成的子群。
酉群 U(n) 对 n > 1 是非交换的。U(n) 的中心是数量矩阵λI,这里 λ ∈ U(1)。这由舒尔引理得来。这样中心同构于 U(1)。因为 U(n) 的中心是一个 1 维阿贝尔正规子群,酉群不是半单的。
拓扑
酉群 U(n) 作为 Mn(C) 的子集赋予相对拓扑, Mn(C) 是所有 n×n 复矩阵集合,本身同构于 2n2 维欧几里得空间
作为一个拓扑空间,U(n) 是紧连通空间。因为 U(n) 是 Mn(C) 的一个有界闭子集,然后海涅-波莱尔定理可知紧性。欲证 U(n) 是连通的,回忆到任何酉矩阵 A 能被另一个酉矩阵 S 对角化。任何对角酉矩阵的对角线上都是绝对值为 1 的复数。从而我们可以写成
U(n) 中从单位到 A 的一条道路由
给出。
酉群不是单连通的;对所有 n,U(n) 的基本群是无限循环群
第一个酉群 U(1) 是一个拓扑圆周,熟知其有同构于 Z 的基本群,包含映射 U(n) o U(n+1) 在 π1 上是同构(其商是斯蒂弗尔流形)。
行列式映射 诱导了基本群的同构,分裂映射诱导其逆。
三选二性质
酉群是正交群、辛群与复数群的 3 重交集:
从而一个酉结构可以视为一个正交结构、复结构与辛结构,他们要求是“一致的”(意思是说:复结构与辛形式使用同样的 J,且 J 是正交的;取定一个 J 将所有群写成矩阵群便确保了一致性)。
事实上,它是这三个中任何两个的交;从而一个一致的正交与复结构导致了一个辛结构,如此等等。
在方程的层次上,这可以有下面看出
辛:ATJA = J,
复:A−1JA = J,
正交:AT = A−1,
任何两个方程蕴含第三个。
在形式的层次上,这可从埃尔米特形式分解为实部与虚部看出: 实部是对称的(或正交),虚部是斜正交(辛)——他们由复结构联系(这便是一致性)。在一个殆凯勒流形上,可以将这个分解写成 h = g + iω,这里 h 是埃尔米特形式,g 是黎曼度量,i 是殆复结构,而 ω 是殆辛结构。
从李群的观点来看,这可部分地解释如下: O(2n) 是 的极大紧子群,而 U(n) 是 与 Sp(2n) 的极大紧子群。从而交集 或 是这些群的极大紧子群,即 U(n)。从这个观点来看,意料之外的是交集 。
结构:殆埃米尔特
用 G-结构的语言来说,一个具有 U(n)-结构的流形是一个殆埃米尔特流形。
推广
从李群的观点来看,典型酉群是斯坦伯格群 的实形式,后者是由一般线性群的“图表自同构”(翻转 Dynkin diagram An,对应于转置逆)与扩张 的域同构(即复共轭)的复合得到的代数群。两个自同构都是代数群的自同构,阶数为 2,可交换,酉群作为代数群是乘积自同构的不动点。典型酉群是这个群的实形式,对应于标准埃尔米特形式 Ψ,它是正定的。
这可从几个方面推广:
推广到其它埃尔米特形式得到了不定酉群 ;
域扩张可用任何 2 阶可分代数取代,最特别地是一个 2 阶有限域扩张;
推广到其它图表得出李型群,即其它斯坦伯格群 , (以及 )Suzuki-Ree 群 ;
考虑一个推广的酉群作为代数群,可取它的点在不同的代数上。
不定形式
类似于不定正交群,给定一个不必正定(但一般取为非退化)的埃尔米特形式,考虑保持这个形式的变换,我们可以定义不定酉群。这里我们在复向量空间上考虑问题。
给定复向量空间 V 上的一个埃尔米特形式 Ψ,酉群 U(Ψ) 是保持这个形式的变换群:变换 M 使得 Ψ(Mv,Mw) = Ψ(v,w),对所有。写成矩阵,设这个形式用矩阵 Φ 表示,这便是说 M *ΦM = Φ。
就像实数上的对称形式,埃尔米特形式由符号确定,所有都是酉合同于对角线上 p 个元素为 1,q 个 - 1 的对角矩阵。非退化假设等价于 p + q = n。在一组标准基下,这代表二次形式:
,
作为对称形式是:
,
得出的群记为 U(p,q) 。
有限群
在 q = pr 个元素的有限域 上,有一个唯一的 2 阶扩张域 ,带有 2 阶自同构(弗罗贝尼乌斯自同构的 r 次幂)。这使得我们可以定义 上一个向量空间 V 上的埃尔米特形式,是一个-双线性映射使得以及 Ψ(w,cv) = cΨ(w,v) 对 。 另外,有限域上向量空间的所有非退化埃尔米特形式都酉合同与用恒同矩阵表示的标准形式。这便是说,任何埃尔米特形式酉等价于
,
这里 wi,vi 表示在 n-维空间 V 的某个特定 -基下的坐标(Grove 2002, Thm. 10.3)。
从而我们对扩张 可以定义一个(唯一的)n 维酉群,记作 U(n,q) 或 (取决于作者的习惯)。酉群中矩阵的行列式为 1 的子群称为特殊酉群,记作 SU(n,q) 或 SU(n,q2)。为方便起见,本文使用 U(n,q2) 写法。U(n,q2) 的中心的阶数为 q + 1 由为酉数量矩阵组成,这便是所有矩阵 cIV,这里 cq+1 = 1 。特殊酉群的中心的阶数为 gcd(n,q + 1) ,由那些阶数整除 n 的酉数量矩阵组成。酉群除以中心的商称为射影酉群,PU(n,q2),特殊酉群除以中心是射影特殊酉群 PSU(n,q2) 。在大多数情形( 与 ),SU(n,q2) 是完全群而 PSU(n,q2) 是有限单群(Grove 2002, Thm. 11.22 and 11.26)。
2阶可分代数
更一般地,给定一个域 k 与一个 2 阶可分 k-代数 K(可能是一个域扩张但也未必),我们可以定义关于这个扩张的酉群。
首先,存在 K 的唯一 k-自同构 是一个对合且恰好不动元为 k(当且仅当 )。这是复共轭与 2 阶有限域扩张共轭的推广,从而我们可以在它上面的定义埃尔米特形式与酉群。
代数群
给出。
对域扩张 与标准(正定)埃尔米特形式,这得出了具有实点与复点的代数群:
,
.
一种只有一个运算的、比较简单的代数结构;是可用来建立许多其他代数系统的一种基本结构。
设G为一个非空集合,a、b、c为它的任意元素。如果对G所定义的一种代数运算“·”(称为“乘法”,运算结果称为“乘积”)满足:
(1)封闭性,a·b∈G;
(2)结合律,即(a·b)c = a·(b·c);
(3)对G中任意元素a、b,在G中存在惟一的元素x,y,使得a·x= b,y·a=b,则称G对于所定义的运算“·”构成一个群。例如,所有不等于零的实数,关于通常的乘法构成一个群;时针转动(关于模12加法),构成一个群。
满足交换律的群,称为交换群。
群是数学最重要的概念之一,已渗透到现代数学的所有分支及其他学科中。凡是涉及对称,就存在群。例如,可以用研究图形在变换群下保持不变的性质,来定义各种几何学,即利用变换群对几何学进行分类。可以说,不了解群,就不可能理解现代数学。
1770年,拉格朗日在讨论代数方程根之间的置换时,首先引入群的概念,而它的名称,是伽罗华在1830年首先提出的。
群论
群是现代数学中最重要的具有概括性的概念之一,有关群的性质及其结构的理论称为群论。
1831年,年仅20岁的青年数学家伽罗华得到n次方根可否通过对系数施行四则 和开方运算来求解的判据,一举解决了五 次以上代数方程求解的千古难题。这个问题得以解决,取决于他对置换群性质所作的深入讨论,群的概念就在这时产生了。 研究代数方程的性质与群的性质之间的关系已成为一门大理论伽罗华理论所研 究的对象,伽罗华理论在群论的发展中起 作决定性的作用。40年后克莱因的变换群导致几何观的一次革命; 索福斯·李研究 微分方程,开创李群论,更深刻影响着数 学物理的发展。在数学物理的对称现象的 研究中,对称的概念看来是明显的,但对 对称概念的精确和一般的描述,特别是对 称性质量上的计算,却要用群论这个工具 才行。19世纪到20世纪,在几何、晶体等 物理、化学中,都弄清了对称规律的重要 意义,因此群论的方法和结果得以广泛使 用。1890年,费道洛夫用群论阐明晶体结 构的几何形态,特别是20世纪30年代, 书尔、维格纳等人把群论应用于量子力学 取得成功,导致了原子、分子结构的重要 发现。群论已经是量子物理和量子化 学常用的工具了,这更使群论走出了纯数 学专业的数学王国,活跃于更广阔的科学 地。今天,群的概念已普遍被认为是数学 及其许多应用中最基本的概念之一,它不 但渗透到像几何学、代数拓扑学、函数论、 泛函分析及其他许多数学分支中而着重要 的作用,还形成了一些新学科,如拓扑群、 李群、代数群、算术群等。它们还具有与 群结构相联系的其他结构,如拓扑、解析 流形、代数簇等,并在结晶学、理论物理、 量子化学以至编码学、自动机理论等方面 都有重要应用。作为推广 “群” 的概念的 产物,群论及其在计算机科学中的应用, 也有很大的发展。
群的概念中有两个方面: 一是指出它 的元素是哪些事物,二是元素间运算的规 则,可分别用它们来研究群。研究群的元 素和元素集合的各种性质,以及它们同群 的运算性质之间的联系,这常常是研究各 种具体的群,如交换群、置换群、运动群、 拓扑群等; 也可研究完全由群的运算性质 表示出来的特性,它属于抽象群论或一般 群论。下面是一些抽象群论的概念: 同构, 一个群的元素与另一个群的元素对应,运 算结果也是对应的,称两个群同构; 一个 群所含元素的个数称为群的阶,群G的阶 记为|G| ,|G|有限时为有限群,无限 时为无限群; 同构中两个群中的元素是一 一对应的,若存在多对一的对应则称为同 态。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市