随机分析模型

信息科学术语

随机分析模型,一种非确定性分析模型,变量之间的关系是以统计值的形式给出的模型。在现实世界中,不确定现象是普遍存在的。例如,漂浮在液面上的微小粒子不断地进行着杂乱无章运动,粒子在任一时刻的位置是不确定的;又如公共汽车站等车的人数在任一时刻也是不确定的,因为随时都可能有乘客的到来和离去。这类不确定现象,表面看来无法把握,其实,在其不确定的背后,往往隐藏着某种确定的概率规律,因此,以概率与数理统计为基础的随机分析模型就成为解决此类问题最有效的工具之一。

模型介绍
从实际问题抽象出一个物理模型或者说给实际问题建立一个物理模型,是许多实际问题分析建模工作中的关键内容。依随机规律是否随时间的变化而变化,随机分析模型可分为静态和动态两类,前者只涉及到随机变量(向量)的概率分布及其数字特征,后者则要处理随机过程和随机微分方程。
随机模型是试验的各处理皆是随机抽自 的一组随机样本,因而处理效应τ是随机的,随试验的不同而不同。若重复做试验,必然是从总体 中随机抽取一组新的样本。其分析的目的不在于研究处理效应,而是在于研究τ的变异度,故推断也不是关于某些供试处理,而是关于抽出这些处理的整个总体。
理论基础
鞅论
鞅论分为离散鞅和连续鞅,是由美国数学家杜布建立的一套数学理论,其中包括的基本概念和重要定理有:上鞅、下鞅、停时定理、鞅收敛定理、鞅不等式、鞅差列的强大数律、鞅的中心极限定理等。数学上,鞅论可以应用在调和函数下调和函数研究方面,是随机过程数理统计研究的有力工具。本质上,鞅是一个过程,这个过程可以理解为一个进行公平赌博的赌徒的财富(变化)情况,广泛应用于金融、医学以及保险等行业的实际问题中。
定义
如果随机过程 满足以下两个条件:
1. 对于 的任何n, ;
2.
则称随机过程为鞅。在鞅理论中,关键问题就是找到鞅测度或者等价鞅测度,找到鞅测度或者等价鞅测度也就找到了行业应用中我们想要得到的结果。
停时定理(可选抽样定理)
鞅停时定理的意义在于,在公平的赌博中,你不可能赢。在一个公平的博弈中,若局中人在每次赌局结束时的赌本与他开始时的赌本一样,但他未必一直赌下去,他可以选择任一时刻停止赌博,这一时刻是随机的,如果要他在停止时旳赌本和他开始时的赌本相同,需要附加条件,这些条件一旦满足就是鞅停时定理。而停时概念就蕴含其中:事件应该由某时刻以及之前的信息完全确定,而不需要也无法借助将来的情况,且一场博弈不会无限期地延续下去,停止一个事件是随时的。并且停止一个事件是以巳发生的事件结果为依据的。停时定理可用于确定股票期权值的界。
鞅收敛定理
鞅收敛定理说明:在很一般的条件下,鞅会收敛到一个随机变量。这个结果很有用,例如,假设我们对某一事件发生的概率P感兴趣,而对P又一无所知,那么我们就根据鞅收敛定理,可以假定P是(0, 1)上的均匀分布,帮助随机过程的推导。
泊松过程
泊松过程是时间间隔为独立且同时服从指数分布的随机变量。由于该随机变量概率分布的不同,决定着随机过程的不同。分布为任意分布是得到的过程为计数过程,也称为更新过程。泊松过程是一种特殊的更新过程。
定义 是独立服从 的随机变量序列,令 ,则计数过程 为时间间隔服从Gamma分布的更新过程,称之为Gamma更新过程,其特殊情况为泊松过程。
如果 是Gamma更新过程,则 ,n=0, 1, 2, ...,当a为正整数时, ,n=0, 1, 2, ...。特别地,当a=1时, ,n=0, 1, 2, ...,此时为泊松过程。由于更新过程的强度为 ,故此更新过程强度为 ,其中 。所以对于泊松过程,时间间隔 的分布为: ,其密度函数为: 。
Possion过程常见的例子有:
Wiener过程
维纳过程(Wiener Process)是一个重要的独立增量过程,也称作布朗运动过程。
当随机过程 满足下列条件时,我们称随机过程 为布朗运动:
1. 该过程初始值为0,即;
2. 具有固定的连续增量;
3. 在时间t内连续;
4. 增量 服从均值为0,方差为|t-s|的正态分布,即: 。
伊藤过程
伊藤过程是日本数学家伊藤发展建立的带有布朗运动干扰项的随机微分方程,可看成为一般化的维纳过程。随机过程 ,如果其微分形式可以表示为: ,其中dz是Wiener过程,则称 为一个伊藤过程伊藤引理表明,如果随机变量x遵循伊藤过程,设 是x和t的二阶连续可微函数,则 遵循如下过程: 。
应用实例
风力发电系统
威布尔(Weibull)分布双参数曲线用于拟合风速分布的线型,其概率密度函数可表达为:
式中:v为风速;k和c分别为Weibull分布的形状参数、适度参数,μ为平局风速,σ为标准差。
当知道了风速的分布之后,就可以通过风力发电机组的输出功率与风速之间的近似关系得到输出功率的随机分布。风力发电机出力与风速之间的函数关系如图1所示。其中 为风力发电机额定功率, 为切入风速, 为额定风速, 为切出风速。由图1可以得到风力发电输出功率 与风速v之间的函数关系式:
经统计,大部分时间内风速维持在 和 之间, 与v近似成一次函数关系,因此可求出风力发电有功功率概率密度如下:
风力发电机可简化处理为PQ节点,假定通过风电机组中电容器的自动投切,可使功率因数恒定不变。这样,无功功率为:,式中:φ为功率因数角,对并网风电机而言,φ一般位于第4象限,tanφ为负值。
光伏发电系统
太阳能电池是光伏发电系统的基础和核心,它的输出功率与光照强度密切相关,由于光强具有随机性 因此输出功率也是随机的,据统计,在一定时间段内(1h或几h),太阳光照强度可以近似看成贝塔分布(Beta Distribution),其概率密度函数如下:
式中:r和 分别为这一时间段内的实际光强和最大光强;α,β均为Beta分布的形状参数。
假设给定一太阳能电池仿真,具有M个电池组件,每个组件的面积和光电转换效率分别为,于是这个太阳能电池方阵总的输出功率为,式中:A为方阵总面积η为方阵总的光电转换效率,它们分别为:
已知光强的概率密度函数,可以得到太阳能电池方阵输出功率的概率密度函数也呈Beta分布:
式中:为方阵最大输出功率。与风力发电类似,光伏发电系统也由电容器组来保证功率因数基本为一常数,因此在潮流计算中可看做PQ节点,其随机分布也呈Beta分布。
配电负荷
多数有关随机潮流的文献均将负荷预测结果看做一个随机变量,并采用正态分布近似反映负荷的不确定性。假设负荷实部和虚部参数分别是 和 ,其实部和虚部的概率密度函数分别为:
式中:μ为数学期望, 为方差。
意义
金融、医学、保险等行业具有较高的复杂性和多样性,给的行业实际问题的分析研究带来很大麻烦,随机分析模型正是用于这些复杂性问题的分析,给行业实际问题研究带来巨大帮助。
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市