集合论公理系统

公理集合论的基础部分

集合论公理系统(axiom systems for set theory)公理集合论的基础部分。如同平面几何中的点、线、面一样,集合是一个不加定义的原始概念。为了克服罗素悖论,人们试图把集合论公理化,用公理对集合加以限制。第一个常用的公理系统是策梅洛弗伦克尔等提出的Z-F集合论公理系统。这个系统中只有一个非逻辑二元关系符号“∈”,非逻辑公理有:外延公理空集公理、无序对公理、并集公理幂集公理、无穷公理、分离公理模式替换公理模式正则公理,再加上选择公理就构成Z-F-C系统。利用公理可以定义出空集、序对、关系、函数等集合,还可以给出序关系良序关系序数基数,也可以给出自然数、整数、实数等概念。集合论中有关集合的性质,在公理集合论中都可以得到证明。公理系统中还可以证明公理之间的相对和谐性和独立性,例如,柯恩于1960年创立公理集合论中的力迫法,并用来证明Z-F-C系统与连续统假设独立。公理集合论发展很快,马丁公理苏斯林假设等新公理新方法已被广泛使用,组合集合论、描述集合论大基数力迫法的研究已经渗透到数学的各个分支。

基本介绍
集合论公理系统是集合论的一组特定的公理系统,在集合论公理系统中,集合是一个不加定义的原始概念,集合和属于关系“∈”是通过公理来刻画的,虽然每条公理都不是借助于直观而是借助于严谨的形式语言加以刻画的,然而公理的背景都是很深刻和直观的,它们来源于康托尔(G.F.P.Cantor)的集合论,是从经典集合论中整理和抽象出来的基本原则.每一公理都刻画集合的某一基本性质。把某些公理放在一起组成刻画集合特征的若干基本原则,就称为集合论的一个公理系统。公理系统的选择不是惟一的,但是应该遵循一些基本原则。如系统的相容性(协调性)、完备性以及独立性等要求。1908年出现两个著名的公理系统,这就是策梅洛(E.F.F.Zermelo)的公理系统和罗素(B.A.W.Russell)的类型论,前者经斯科伦(A.T.Skolem)、弗伦克尔(A.A.Fraenkel)的改进与补充,成为最易于理解、影响最广的一个系统,被称为ZF系统。1925年,冯·诺伊曼(J.von Neumann)又提出一个系统,后经贝尔奈斯(P.Bernays)、哥德尔(K.Go¨del)修改形成GB系统(亦称NGB系统),除上述两个著名的系统外,还有奎因系统、王浩系统、阿克曼系统、莫利和斯科特系统。
建立众多集合论公理系统的背景是在康托尔集合论中包含着深刻的、丰富的、新的概念和方法,悖论的发现促使人们借助于公理化方法,以期排除集合论中已知的悖论,并系统地整理康托尔的理论和方法,评价集合论公理系统的科学标准是:
1.能够描述康托尔理论的丰富内容,尽可能多地建立康托尔理论中已有的定理。
2.能够避免已经发现的悖论。
3.便于解决集合论中尚未解决的问题,主要是连续统假设和选择公理。
4.系统的协调性、独立性、完备性以及是否便于理解和表达等。
罗素悖论
集合这个概念是非常基本和自然的,并且自古以来在一些数学著作中就已经使用。然而,人们通常把集合创始人归功于19世纪中期德国数学家康托尔(G.Cantor),因为他对集合论作出巨大贡献。在集合论发展的开始阶段,康托尔并不明显地从公理出发来讨论集合论,可是,剖析康托尔集合论中的许多证明便知,几乎他所证明的一切定理均能从三个公理得出,这三个公理是:
①外延公理:如果两个集合中各个元都是相同的,则它们相等。
②抽象公理:任给一个性质,都有一个满足该性质的客体所组成的集合。
③选择公理:每个集合都有一个选择函数。
但是,毛病却出在抽象公理上。1903年,英国哲学家和数学家罗素(B.A.M.Russell)发现“由不为自身的成员这一性质的所有客体的集合”会导出矛盾来,这就是著名罗素悖论,由于悖论在推动公理化发展方面有重要作用,在这里给出它的推导,为了便于符号表述,先引进一个表示属于关系的二位谓词∈,如“x∈y”,读作x属于y,或者x为y的元(或元素、成员),或者x在y中,再使用已熟悉的数理逻辑符号,则抽象公理可表为:
其中, 是不以y为自由变元的公式(公式的定义下面给出),为了得出罗素悖论,取 为“x不为x的成员”,即 .于是,得到抽象公理的一个特例:
在(2)中取x=y,可得
而(3)等价于 ,即导出矛盾。由此可见,这个简单推导对集合论的公理基础有深远影响。它表明了把(1)作为公理是承认得太多了。如果坚持朴素的逻辑,便不能在自身不矛盾的方式下坚持每个性质均存在一个具有该性质的客体构成的集合。
由于罗素悖论对抽象公理的巨大冲击,蕴育着一个新的更加完善的公理即将产生。1908年德国数学家策墨勒(E.Zermelo)提出了“子集公理”,也称为“分出公理”,它允许从给定集合中分出满足某种性质的客体并且恰好由这些客体组成一个新集合.对于(1),子集公理的精确形式表为:
其中y不为的自由变元,由(1)到(4)的改变看来是微小的,然而却是十分有效的。(1)无条件断言集合的存在,而(4)完全是有条件的,这个条件称为入集条件,首先要给出集合z,然后才能断言子集y的存在。可见,子集公理能避免悖论,从而使公理化集合论得以存在和发展。
符号和基本概念
集合论与其它学科一样,也有自己的目标语言,该语言的符号可分3类:常元符,变元符和数理逻辑符号.
①常元符号:有三个,它们是隶属关系符∈,空集符∅,相等符=。
②变元符号:A,B,C,…,R,S…为集合变元,而x,y,z,…为以集合或个体为值的一般变元,有时还标出足码或肩码。
③数理逻辑符号:联结词,量词以及标点符。
与此同时,也给出常用到的元语言符号,它们是永真蕴涵符,永真等价符,定义符:=,用粗体字母u,v,w,…表示以目标语言的变元x,y,z,…和常
元符∅为值的元语言变元;用粗体字母P,Q,…以及希腊字母Φ和Ψ表示以目标语言的原始公式为值的元语言公式。
称上述目标语言中三类符号的有穷序列为表达式,根据其结构又分别定义为原始原子公式和原始公式。
集合公理
公理集合论避免悖论,使集合论得以存在和发展,集合论的公理系统,本章给出了8个公理,它们是:
外延公理:具有相同的各成员的两集合是相等的。
子集公理:存在由集合A中满足某种性质的那些元素构成的集合B,称B为A的子集。
偶集公理:存在由集合A、B构成集合C。
联集公理:存在由集合A的成员的成员构成集合C。
正则公理:每个非空的集合,都有一极小元。
无穷公理:有一归纳集的存在。
幂集公理:存在由集合A的所有子集构成的集合B。
此外,该公理系统还有两个公理:代换公理,选择公理
全国各地天气预报查询

上海市

  • 市辖区
  • 云南省

  • 临沧市
  • 云南省

  • 丽江市
  • 云南省

  • 保山市
  • 云南省

  • 大理白族自治州
  • 云南省

  • 德宏傣族景颇族自治州
  • 云南省

  • 怒江傈僳族自治州
  • 云南省

  • 文山壮族苗族自治州
  • 云南省

  • 昆明市
  • 云南省

  • 昭通市
  • 云南省

  • 普洱市
  • 云南省

  • 曲靖市
  • 云南省

  • 楚雄彝族自治州
  • 云南省

  • 玉溪市
  • 云南省

  • 红河哈尼族彝族自治州
  • 云南省

  • 西双版纳傣族自治州
  • 云南省

  • 迪庆藏族自治州
  • 内蒙古自治区

  • 乌兰察布市
  • 内蒙古自治区

  • 乌海市
  • 内蒙古自治区

  • 兴安盟
  • 内蒙古自治区

  • 包头市
  • 内蒙古自治区

  • 呼伦贝尔市
  • 内蒙古自治区

  • 呼和浩特市
  • 内蒙古自治区

  • 巴彦淖尔市
  • 内蒙古自治区

  • 赤峰市
  • 内蒙古自治区

  • 通辽市
  • 内蒙古自治区

  • 鄂尔多斯市
  • 内蒙古自治区

  • 锡林郭勒盟
  • 内蒙古自治区

  • 阿拉善盟
  • 北京市

  • 市辖区
  • 吉林省

  • 吉林市
  • 吉林省

  • 四平市
  • 吉林省

  • 延边朝鲜族自治州
  • 吉林省

  • 松原市
  • 吉林省

  • 白城市
  • 吉林省

  • 白山市
  • 吉林省

  • 辽源市
  • 吉林省

  • 通化市
  • 吉林省

  • 长春市
  • 四川省

  • 乐山市
  • 四川省

  • 内江市
  • 四川省

  • 凉山彝族自治州
  • 四川省

  • 南充市
  • 四川省

  • 宜宾市
  • 四川省

  • 巴中市
  • 四川省

  • 广元市
  • 四川省

  • 广安市
  • 四川省

  • 德阳市
  • 四川省

  • 成都市
  • 四川省

  • 攀枝花市
  • 四川省

  • 泸州市
  • 四川省

  • 甘孜藏族自治州
  • 四川省

  • 眉山市
  • 四川省

  • 绵阳市
  • 四川省

  • 自贡市
  • 四川省

  • 资阳市
  • 四川省

  • 达州市
  • 四川省

  • 遂宁市
  • 四川省

  • 阿坝藏族羌族自治州
  • 四川省

  • 雅安市
  • 天津市

  • 市辖区
  • 宁夏回族自治区

  • 中卫市
  • 宁夏回族自治区

  • 吴忠市
  • 宁夏回族自治区

  • 固原市
  • 宁夏回族自治区

  • 石嘴山市
  • 宁夏回族自治区

  • 银川市
  • 安徽省

  • 亳州市
  • 安徽省

  • 六安市
  • 安徽省

  • 合肥市
  • 安徽省

  • 安庆市
  • 安徽省

  • 宣城市
  • 安徽省

  • 宿州市
  • 安徽省

  • 池州市
  • 安徽省

  • 淮北市
  • 安徽省

  • 淮南市
  • 安徽省

  • 滁州市
  • 安徽省

  • 芜湖市
  • 安徽省

  • 蚌埠市
  • 安徽省

  • 铜陵市
  • 安徽省

  • 阜阳市
  • 安徽省

  • 马鞍山市
  • 安徽省

  • 黄山市
  • 山东省

  • 东营市
  • 山东省

  • 临沂市
  • 山东省

  • 威海市
  • 山东省

  • 德州市
  • 山东省

  • 日照市
  • 山东省

  • 枣庄市
  • 山东省

  • 泰安市
  • 山东省

  • 济南市
  • 山东省

  • 济宁市
  • 山东省

  • 淄博市
  • 山东省

  • 滨州市
  • 山东省

  • 潍坊市
  • 山东省

  • 烟台市
  • 山东省

  • 聊城市
  • 山东省

  • 菏泽市
  • 山东省

  • 青岛市
  • 山西省

  • 临汾市
  • 山西省

  • 吕梁市
  • 山西省

  • 大同市
  • 山西省

  • 太原市
  • 山西省

  • 忻州市
  • 山西省

  • 晋中市
  • 山西省

  • 晋城市
  • 山西省

  • 朔州市
  • 山西省

  • 运城市
  • 山西省

  • 长治市
  • 山西省

  • 阳泉市
  • 广东省

  • 东莞市
  • 广东省

  • 中山市
  • 广东省

  • 云浮市
  • 广东省

  • 佛山市
  • 广东省

  • 广州市
  • 广东省

  • 惠州市
  • 广东省

  • 揭阳市
  • 广东省

  • 梅州市
  • 广东省

  • 汕头市
  • 广东省

  • 汕尾市
  • 广东省

  • 江门市
  • 广东省

  • 河源市
  • 广东省

  • 深圳市
  • 广东省

  • 清远市
  • 广东省

  • 湛江市
  • 广东省

  • 潮州市
  • 广东省

  • 珠海市
  • 广东省

  • 肇庆市
  • 广东省

  • 茂名市
  • 广东省

  • 阳江市
  • 广东省

  • 韶关市
  • 广西壮族自治区

  • 北海市
  • 广西壮族自治区

  • 南宁市
  • 广西壮族自治区

  • 崇左市
  • 广西壮族自治区

  • 来宾市
  • 广西壮族自治区

  • 柳州市
  • 广西壮族自治区

  • 桂林市
  • 广西壮族自治区

  • 梧州市
  • 广西壮族自治区

  • 河池市
  • 广西壮族自治区

  • 玉林市
  • 广西壮族自治区

  • 百色市
  • 广西壮族自治区

  • 贵港市
  • 广西壮族自治区

  • 贺州市
  • 广西壮族自治区

  • 钦州市
  • 广西壮族自治区

  • 防城港市
  • 新疆维吾尔自治区

  • 乌鲁木齐市
  • 新疆维吾尔自治区

  • 伊犁哈萨克自治州
  • 新疆维吾尔自治区

  • 克孜勒苏柯尔克孜自治州
  • 新疆维吾尔自治区

  • 克拉玛依市
  • 新疆维吾尔自治区

  • 博尔塔拉蒙古自治州
  • 新疆维吾尔自治区

  • 吐鲁番市
  • 新疆维吾尔自治区

  • 和田地区
  • 新疆维吾尔自治区

  • 哈密市
  • 新疆维吾尔自治区

  • 喀什地区
  • 新疆维吾尔自治区

  • 塔城地区
  • 新疆维吾尔自治区

  • 巴音郭楞蒙古自治州
  • 新疆维吾尔自治区

  • 昌吉回族自治州
  • 新疆维吾尔自治区

  • 自治区直辖县级行政区划
  • 新疆维吾尔自治区

  • 阿克苏地区
  • 新疆维吾尔自治区

  • 阿勒泰地区
  • 江苏省

  • 南京市
  • 江苏省

  • 南通市
  • 江苏省

  • 宿迁市
  • 江苏省

  • 常州市
  • 江苏省

  • 徐州市
  • 江苏省

  • 扬州市
  • 江苏省

  • 无锡市
  • 江苏省

  • 泰州市
  • 江苏省

  • 淮安市
  • 江苏省

  • 盐城市
  • 江苏省

  • 苏州市
  • 江苏省

  • 连云港市
  • 江苏省

  • 镇江市
  • 江西省

  • 上饶市
  • 江西省

  • 九江市
  • 江西省

  • 南昌市
  • 江西省

  • 吉安市
  • 江西省

  • 宜春市
  • 江西省

  • 抚州市
  • 江西省

  • 新余市
  • 江西省

  • 景德镇市
  • 江西省

  • 萍乡市
  • 江西省

  • 赣州市
  • 江西省

  • 鹰潭市
  • 河北省

  • 保定市
  • 河北省

  • 唐山市
  • 河北省

  • 廊坊市
  • 河北省

  • 张家口市
  • 河北省

  • 承德市
  • 河北省

  • 沧州市
  • 河北省

  • 石家庄市
  • 河北省

  • 秦皇岛市
  • 河北省

  • 衡水市
  • 河北省

  • 邢台市
  • 河北省

  • 邯郸市
  • 河南省

  • 三门峡市
  • 河南省

  • 信阳市
  • 河南省

  • 南阳市
  • 河南省

  • 周口市
  • 河南省

  • 商丘市
  • 河南省

  • 安阳市
  • 河南省

  • 平顶山市
  • 河南省

  • 开封市
  • 河南省

  • 新乡市
  • 河南省

  • 洛阳市
  • 河南省

  • 漯河市
  • 河南省

  • 濮阳市
  • 河南省

  • 焦作市
  • 河南省

  • 省直辖县级行政区划
  • 河南省

  • 许昌市
  • 河南省

  • 郑州市
  • 河南省

  • 驻马店市
  • 河南省

  • 鹤壁市
  • 浙江省

  • 丽水市
  • 浙江省

  • 台州市
  • 浙江省

  • 嘉兴市
  • 浙江省

  • 宁波市
  • 浙江省

  • 杭州市
  • 浙江省

  • 温州市
  • 浙江省

  • 湖州市
  • 浙江省

  • 绍兴市
  • 浙江省

  • 舟山市
  • 浙江省

  • 衢州市
  • 浙江省

  • 金华市
  • 海南省

  • 三亚市
  • 海南省

  • 三沙市
  • 海南省

  • 儋州市
  • 海南省

  • 海口市
  • 海南省

  • 省直辖县级行政区划
  • 湖北省

  • 十堰市
  • 湖北省

  • 咸宁市
  • 湖北省

  • 孝感市
  • 湖北省

  • 宜昌市
  • 湖北省

  • 恩施土家族苗族自治州
  • 湖北省

  • 武汉市
  • 湖北省

  • 省直辖县级行政区划
  • 湖北省

  • 荆州市
  • 湖北省

  • 荆门市
  • 湖北省

  • 襄阳市
  • 湖北省

  • 鄂州市
  • 湖北省

  • 随州市
  • 湖北省

  • 黄冈市
  • 湖北省

  • 黄石市
  • 湖南省

  • 娄底市
  • 湖南省

  • 岳阳市
  • 湖南省

  • 常德市
  • 湖南省

  • 张家界市
  • 湖南省

  • 怀化市
  • 湖南省

  • 株洲市
  • 湖南省

  • 永州市
  • 湖南省

  • 湘潭市
  • 湖南省

  • 湘西土家族苗族自治州
  • 湖南省

  • 益阳市
  • 湖南省

  • 衡阳市
  • 湖南省

  • 邵阳市
  • 湖南省

  • 郴州市
  • 湖南省

  • 长沙市
  • 甘肃省

  • 临夏回族自治州
  • 甘肃省

  • 兰州市
  • 甘肃省

  • 嘉峪关市
  • 甘肃省

  • 天水市
  • 甘肃省

  • 定西市
  • 甘肃省

  • 平凉市
  • 甘肃省

  • 庆阳市
  • 甘肃省

  • 张掖市
  • 甘肃省

  • 武威市
  • 甘肃省

  • 甘南藏族自治州
  • 甘肃省

  • 白银市
  • 甘肃省

  • 酒泉市
  • 甘肃省

  • 金昌市
  • 甘肃省

  • 陇南市
  • 福建省

  • 三明市
  • 福建省

  • 南平市
  • 福建省

  • 厦门市
  • 福建省

  • 宁德市
  • 福建省

  • 泉州市
  • 福建省

  • 漳州市
  • 福建省

  • 福州市
  • 福建省

  • 莆田市
  • 福建省

  • 龙岩市
  • 西藏自治区

  • 山南市
  • 西藏自治区

  • 拉萨市
  • 西藏自治区

  • 日喀则市
  • 西藏自治区

  • 昌都市
  • 西藏自治区

  • 林芝市
  • 西藏自治区

  • 那曲市
  • 西藏自治区

  • 阿里地区
  • 贵州省

  • 六盘水市
  • 贵州省

  • 安顺市
  • 贵州省

  • 毕节市
  • 贵州省

  • 贵阳市
  • 贵州省

  • 遵义市
  • 贵州省

  • 铜仁市
  • 贵州省

  • 黔东南苗族侗族自治州
  • 贵州省

  • 黔南布依族苗族自治州
  • 贵州省

  • 黔西南布依族苗族自治州
  • 辽宁省

  • 丹东市
  • 辽宁省

  • 大连市
  • 辽宁省

  • 抚顺市
  • 辽宁省

  • 朝阳市
  • 辽宁省

  • 本溪市
  • 辽宁省

  • 沈阳市
  • 辽宁省

  • 盘锦市
  • 辽宁省

  • 营口市
  • 辽宁省

  • 葫芦岛市
  • 辽宁省

  • 辽阳市
  • 辽宁省

  • 铁岭市
  • 辽宁省

  • 锦州市
  • 辽宁省

  • 阜新市
  • 辽宁省

  • 鞍山市
  • 重庆市

  • 重庆市

  • 市辖区
  • 陕西省

  • 咸阳市
  • 陕西省

  • 商洛市
  • 陕西省

  • 安康市
  • 陕西省

  • 宝鸡市
  • 陕西省

  • 延安市
  • 陕西省

  • 榆林市
  • 陕西省

  • 汉中市
  • 陕西省

  • 渭南市
  • 陕西省

  • 西安市
  • 陕西省

  • 铜川市
  • 青海省

  • 果洛藏族自治州
  • 青海省

  • 海东市
  • 青海省

  • 海北藏族自治州
  • 青海省

  • 海南藏族自治州
  • 青海省

  • 海西蒙古族藏族自治州
  • 青海省

  • 玉树藏族自治州
  • 青海省

  • 西宁市
  • 青海省

  • 黄南藏族自治州
  • 黑龙江省

  • 七台河市
  • 黑龙江省

  • 伊春市
  • 黑龙江省

  • 佳木斯市
  • 黑龙江省

  • 双鸭山市
  • 黑龙江省

  • 哈尔滨市
  • 黑龙江省

  • 大兴安岭地区
  • 黑龙江省

  • 大庆市
  • 黑龙江省

  • 牡丹江市
  • 黑龙江省

  • 绥化市
  • 黑龙江省

  • 鸡西市
  • 黑龙江省

  • 鹤岗市
  • 黑龙江省

  • 黑河市
  • 黑龙江省

  • 齐齐哈尔市